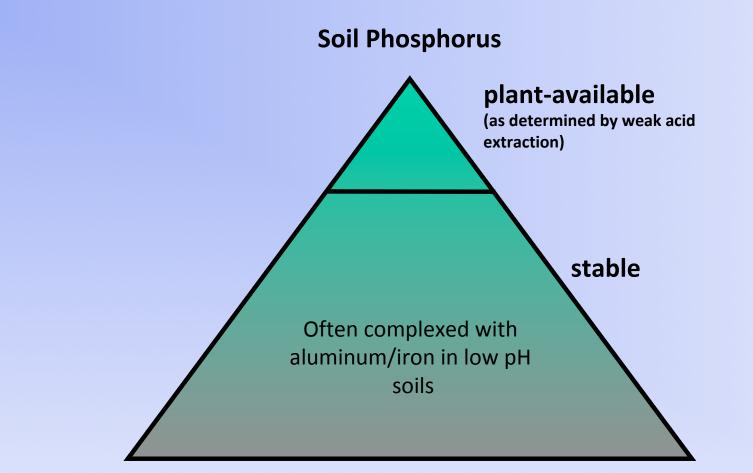

# A Comparison of New England Agricultural Phosphorous Indices

### Presentation by Amanda Wheeler

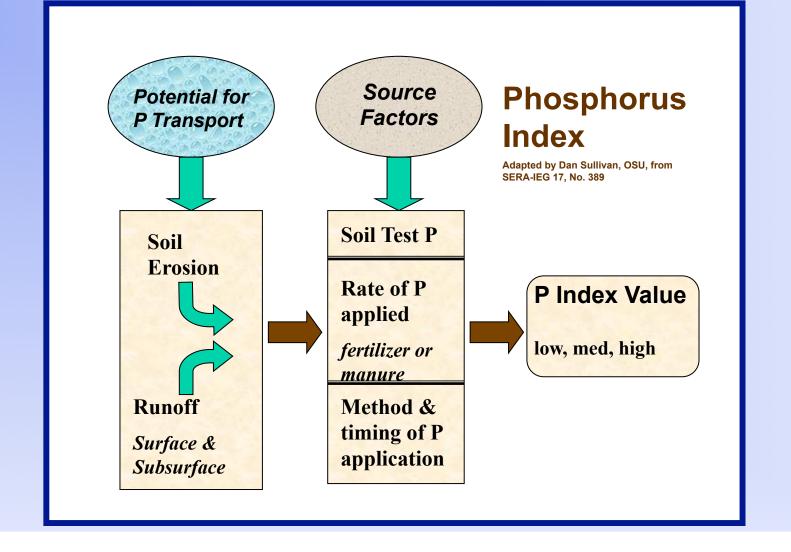




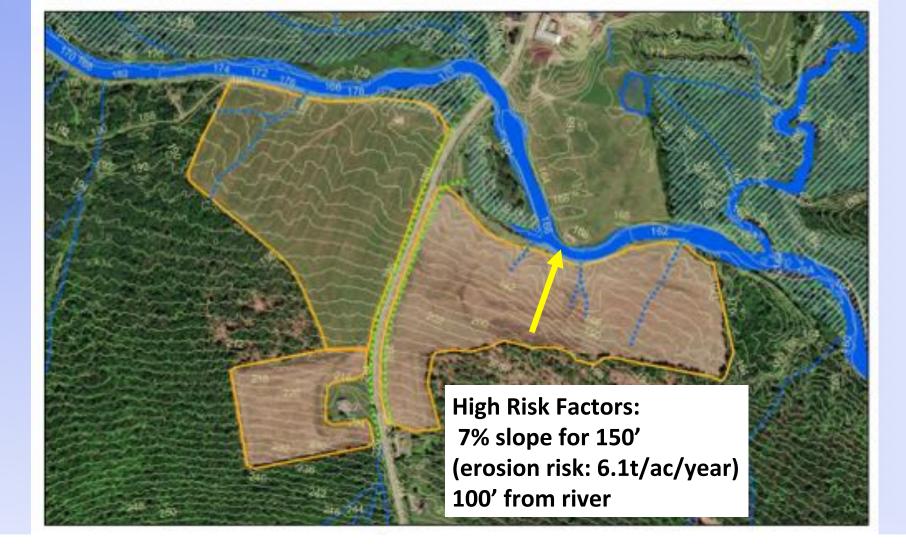



#### Matching Crop Needs with Biosolids P & N

- An 18 ton/ac corn silage crop needs a P<sub>2</sub>O<sub>5</sub>:N ratio of 0.6:1
- Anaerobically digested biosolids provide a P2O5:N ratio 1.3:1
- Applying at agronomic rates for P (assuming P in biosolids is 100% available) would mean applying N at half the rate to meet crop needs




From Craig Cogger, WSU, then haphazardly adulterated by Northern Tilth


### **Plant-Available P on Corn Field Receiving Biosolids**

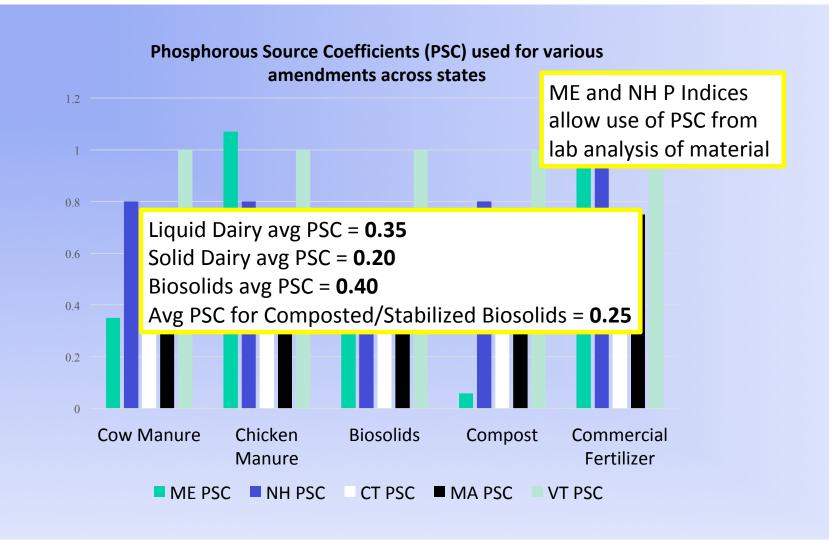
- Continuous corn 18 ton/ac. yield
- Biosolids as primary source of P applied at approx. 180 # P<sub>2</sub>O<sub>5</sub>/ac. with no adjustment for P availability
- Crop uptake rate for P is approximately 90  $\# P_2O_5/ac$ .

|      | - measured                                   | calculated                                             |                                                                                        |
|------|----------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------|
| Year | weak Bra                                     | y P (ppm)                                              | Total P                                                                                |
| 2008 | 139                                          |                                                        | accumulating in<br>soil from biosolids                                                 |
| 2009 | 118                                          | 159                                                    | application                                                                            |
| 2010 | 110                                          | 178                                                    |                                                                                        |
| 2011 | 113                                          | 198                                                    |                                                                                        |
| 2012 | NT                                           | 218                                                    |                                                                                        |
| 2013 | 93                                           | 237                                                    |                                                                                        |
| 2014 | 106                                          | 257                                                    |                                                                                        |
|      | 2008<br>2009<br>2010<br>2011<br>2012<br>2013 | Yearweak Brain20081392009118201011020111132012NT201393 | Year weak Bray P (ppm)   2008 139   2009 118   2010 110   2011 113   2012 NT   2013 93 |










### Nuance of the P Index: much more than soil P

| ME Farm - Phos          |           |           |           |           |       |                |
|-------------------------|-----------|-----------|-----------|-----------|-------|----------------|
|                         | Source    |           |           |           |       |                |
|                         | Factors   | Trar      | nsport Fa | ctors     |       |                |
|                         |           | RUSLE2    | Surface   | Final     | Р     | Recommended    |
|                         | Soil Test | Soil Loss | Water     | Transport | Index | Manure App.    |
| Field Name              | P (lb/ac) | (tons/ac) | Setback   | Sum       | Sum   | Rate (gall/ac) |
| High P Low Runoff Risk  | 80        | 1.90      | 4         | 0.41      | 91    | 7,000          |
| High P High Runoff Risk | 80        | 6.10      | 6         | 0.67      | 134   | 0              |

### Impacts of Source and Transport factors on P Index results in Maine

| Phosphorus Index Results - 10,000 gallon manure app rate |                |        |             |        |                   |         |           |         |  |
|----------------------------------------------------------|----------------|--------|-------------|--------|-------------------|---------|-----------|---------|--|
|                                                          | Source Factors |        |             |        | Transport Factors |         |           |         |  |
|                                                          |                |        |             |        |                   |         |           |         |  |
|                                                          |                | Manure |             |        | RUSLE2            | Surface | Final     |         |  |
|                                                          | Soil Test      | Арр    | Manure P    | Source | Soil Loss         | Water   | Transport | P Index |  |
| Field Name                                               | P (lb/ac)      | Method | Coefficient | Factor | (tons/ac)         | Setback | Sum       | Sum     |  |
| Control                                                  | 21.4           | 0.4    | 0.4         | 42     | 3.00              | 6       | 0.54      | 45      |  |
| Larger Buffer                                            | 21.4           | 0.4    | 0.4         | 42     | 3.00              | 4       | 0.46      | 38      |  |
| Higher PSC                                               | 21.4           | 0.4    | 0.6         | 50     | 3.00              | 6       | 0.54      | 54      |  |
| No-Till Cover Crop                                       | 21.4           | 0.6    | 0.4         | 50     | 0.12              | 6       | 0.42      | 42      |  |



#### **Challenges to using custom PSC: our recent chicken manure PSC update**

| ME Farm - Ph       | Phosphorous availability of  |         | n low P fields |       |  |
|--------------------|------------------------------|---------|----------------|-------|--|
|                    | Filosphorous availability of | Factors |                |       |  |
|                    | 1.07 causes both fields' P   |         |                |       |  |
|                    |                              | е       | Final          | Р     |  |
|                    | Index sums to skyrocket      | r       | Transport      | Index |  |
| Field Name         |                              | :k      | Sum            | Sum   |  |
| Chicken            | with N-based applications    |         |                | 126   |  |
| Chicken no-till CC | of chicken manure            |         | 0.51           | 174   |  |
|                    |                              |         |                |       |  |

Each field is receiving an application rate of chicken manure to satisfy crop N needs

| Field Name         | Soil<br>Test P<br>(ppm) | VT<br>P Index<br>Sum | NH<br>P Index<br>Sum | MA<br>P Index<br>Sum | ME<br>P Index<br>Sum | CT<br>P Index<br>Sum |
|--------------------|-------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Control            | 10.7                    | 66                   | 56                   | 61                   | 48                   | 51                   |
| Larger Buffer      | 10.7                    | 63                   | 48                   | 43                   | 41                   | 36                   |
| Higher PSC         | 10.7                    | 66                   | 56                   | 61                   | 54                   | 51                   |
| No-Till Cover Crop | 10.7                    | 75                   | 61                   | 84                   | 46                   | 71                   |
| High P Low Risk    | 40                      | 100                  | 74                   | 40                   | 91                   | 37                   |
| High P High Risk   | 40                      | 181                  | 98                   | 100                  | 134                  | 100                  |

#### P Index Results and Recommended Application Rates Across States

Meeting crop N needs would require:

13 tons biosolids/ac or

12,000 gallons liquid manure/ac

|         | Сгор        |      | ME P<br>Index<br>Score | Recommended<br>manure app.<br>rate (gall./acre) | ME P<br>Matrix<br>Result | Recommended<br>manure ap rate<br>(gall./acre) |
|---------|-------------|------|------------------------|-------------------------------------------------|--------------------------|-----------------------------------------------|
| Field 1 | Corn Silage | 653  | 898                    | 0                                               | P-based                  | 8,500                                         |
| Field 2 | Corn Silage | 412  | 525                    | 0                                               | P-based                  | 8,500                                         |
| Field 3 | Corn Silage | 140  | 203                    | 0                                               | N-based                  | 11,000                                        |
| Field 4 | Corn Silage | 77   | 106                    | 0                                               | N-based                  | 11,000                                        |
| Field 5 | Corn Silage | 44   | 73                     | 8,500                                           | N-based                  | 10,000                                        |
|         |             |      |                        |                                                 |                          | 4,000 plus pasture                            |
| Field 6 | Pasture     | 14.7 | 28                     | 6,000                                           | N-based                  | drop                                          |
|         | Mixed       |      |                        |                                                 |                          | equivalent of 7,500                           |
| Field 7 | Grass       | 8.9  | 30                     | 8,500                                           | N-based                  | plus pasture drop                             |

## Takeaway Points

- P Index is a good tool for taking into account <u>actual risk</u> rather than just soil P level
- The differences between P Indices in different New England states result in varied application rate constraints for biosolids and manures
- Use of the P Index is important in promoting the use of organic matterbased soil amendments that have an imbalance of N and P relative to crop needs – while protecting surface water
- This tool likely needs to be tweaked to further improve its use with materials like biosolids and manures with high total P levels and low plant available P