

Massachusetts Water Resources Authority

Deer Island Treatment Plant

Deer Island Treatment Plant

- \$3.8 Billion Construction Project
- One of the Largest Wastewater Treatment Plants in the United States
- Treatment Capacity:
 - Maximum
 - 1.27 Billion Gal/Day combined sewer system
 - Up to 700 MGD by Secondary Treatment
 - Average Daily Flow:
 - 365 Million Gal/Day
- Built on 200 Acres
 - includes 60 acres of public access area

Deer Island Process Flow Diagram

Primary Stacked Clarifiers

Five Chain Collector Mechanisms

Primary Sludge Pumps (1.5 x 15 hp)

Primary Scum Pumps (14 per battery)

20 Field Monitoring Instruments

Process Requires 42 Out Of 48 Always Available

Challenges: Covered & Stacked

Monitored With I&C Remotely

All Work Is Confined Space Entry

Secondary Process Area

Biological Treatment - Activated Sludge (Pure O2)
Over 900,000 Square Feet Facilities (1/3 Covered)
Pure Oxygen Generation Facility
Odor Control - Carbon Adsorption

Secondary Clarifiers

Secondary Treatment Has 54 Stacked Clarifiers

Each Clarifier:

1.36 Mgal, 14,350 sqft

Six Collectors

22 Field Instruments

1 x 70HP 3000GPM Return Sludge Pump

Process Requires
50 Out of 54 Always
Available

Challenges:

Stacked

Monitored With I&C

Confined Space Entry

Residuals Processing Statistics for Deer Island

- DITP Influent Solids 262 dry TPD (94% captured)
- Sludge to Digestion 246 dry TPD
 - 70% Primary sludge
 - 30% Waste Secondary sludge
 - Time in Anaerobic Digestion:
 - 18 -20 days
 - 62% Volatile Solids destruction
 - (industry avg. is 45-55%)
- Digas Production 189 kscfh
 - 98% beneficially utilized (value: \$15-\$20 M (heat); & \$2.8 M (power))
 - 65% of days Digas meets all DI heating requirements
 - 96.9% of boiler heat attributable to Digas

Methane Utilization At Deer Island

- Deer Island utilizes 98% of the methane generated to power a steam turbine generator and backpressure turbine for plant heat and hot water
- Avoid purchase of about 5MG in fuel oil annually
- Approximately 28M kWh/yr electricity production
- Approximately \$3.4M/yr electricity savings and revenue

Massachusetts Water Resources Authority

NEFCO – Dryer Trains and Centrifuges

DITP Struvite Formation

- 140 ft tall egg-shaped digesters
- 3 million gallon volume
- 18-20 day holding time
- Digesters are fed in a sequence
- Contents "overflow" into a discharge line
- Prime struvite formation conditions during overflow

Struvite in Overflow Pipe

Other Struvite Formation Spots

- Digester Mixers
- Valves downstream of digester
- Digested sludge centrifuges (at fertilizer plant)
- Other points of turbulence in the line

Struvite

Digester Mixer covered with struvite

Preventative Measures

- Carbon Dioxide Addition (Stickney Plant)
- Ferric Chloride

Remedial Measures

- Sulfuric Acid
- Proprietary Chemicals
- Manual Removal

How Ferric Chloride Works

- Combines with Ortho-Phosphate to Form Vivianite
- Vivianite is Fe₃(PO₄)₂· 8 H₂O
- Vivianite is a grit-like substance that is less destructive than struvite
- Large amounts of Vivianite can create problems

Vivianite in the Grit Collection System

Ferrous/Ferric Chloride Feed System (Struvite Control)

Ferric Feed pumps

Monitoring Ferric Chloride Effectiveness

- Monitor Orthophospate (PO₄³⁻) in digested sludge
- DITP samples sludge from each digester every week day
- Analyze for orthophosphate twice per week using colorimetry technology (EPA 353.2, 365.1)
- Target: 50-75 mg/L orthophosphate
- Challenging target to keep: easy to overshoot or undershoot

MWRA Department of Lab Services Autoanalyzer

Costs and Benefits of Ferric Chloride

- Purchasing ferric chloride is expensive
- 1,600,000 lbs budgeted for next year, at \$.55 per pound cost is \$870,000.
- Limited space to store on-site, only space for seven days supply
- One added benefit, keeps sulfides down in digester gas

Future

- Work on Minimizing Ferric Chloride dose
- Explore Alternatives:
 - Reconfiguring overflow box in digester
 - Precipitate Struvite in side stream process to reduce overall phosphate levels

Massachusetts Water Resources Authority

Thank you!

Questions?