

PFAS in Biosolids: State of Knowledge and

Treatment Opportunities

NEWEA Conference: Sustainable Biosolids Management – A Sure Bet!

October 18, 2019

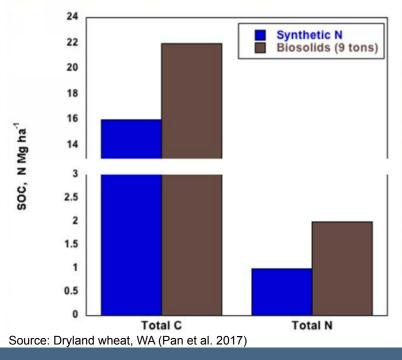
Jay Surti, PE, Residuals Practice Lead – Northeast

Agenda

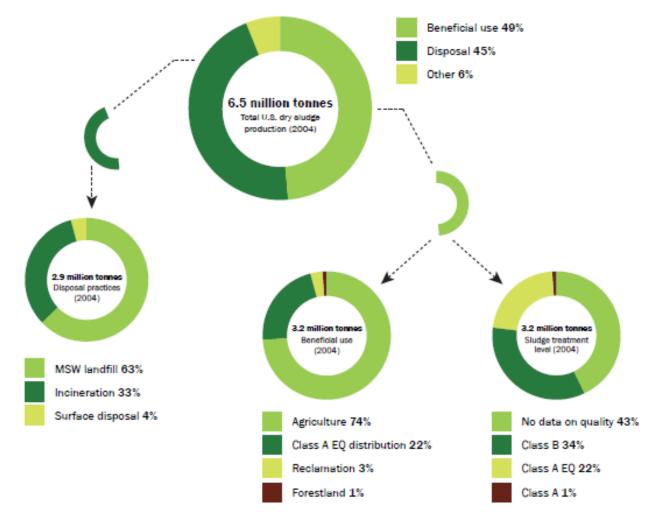
What are PFAS chemicals and why is it an issue for the biosolids industry?

Why is PFAS difficult to treat?

Can we treat biosolids for PFAS and produce high quality biosolids or value-added products?


Take-Aways!

The Biosolids Promise


Organics and *nutrients* in biosolids improve soil quality Sustain cropland productivity

Reduce soil erosion

Magnitude of PFAS Impacts!

Source: Sludge Management, Opportunities in Growing Volumes, Disposal Restrictions & Energy Recovery , GWI, 2012

Biosolids Land Application has had its Challenges!

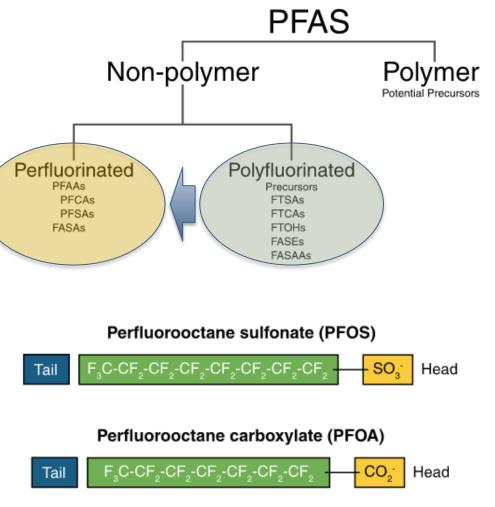
Odors

Persistent public opposition Land application errors

...and now PFAS

What are **PFAS**?

Family of manmade fluorinated chains (>3,000 chemicals)


Perfluoroalkyl substances

- All H atoms attached to carbon atoms are replaced by F atoms
- Short chain and long chain PFAS

Polyfluoroalkyl substances

- H replaced by F on at least one C atoms
- Some can degrade to PFAA

Terminal degradation products (biotic and abiotic) of precursor chemicals

Source: ITRC Factsheet, Naming Conventions and Physical and Chemical Properties of Per- and Polyfluoroalkyl Substances (PFAS)

PFAS Discovery and Manufacturing History

PFAS ¹	Development Time Period								
	1930s	1940s	1950s	1960s	1970s	1980s	1990s	2000s	
PTFE	Invented	Non-Stick Coatings			Waterproof Fabrics				
PFOS		Initial Production	Stain & Water Resistant Products	Firefighting foam				U.S. Reduction of PFOS, PFOA, PFNA (and other select PFAS ²)	
PFOA		Initial Production		otective patings					
PFNA					Initial Production	Architectural	Resins		
Fluoro- telomers					Initial Production	Firefighting F	oams	Predominant form of firefighting foam	
Dominant Process ³		Electrochemical Fluorination (ECF) telomerization (shorter chain ECF)							
Pre-Invention of Chemistry /			Initial Chemical Synthesis / Production			Commercial Products Introduced and Used			
Notes:									

1. This table includes fluoropolymers, PFAAs, and fluorotelomers. PTFE (polytetrafluoroethylene) is a fluoropolymer. PFOS, PFOA, and PFNA (perfluorononanoic acid) are PFAAs.

2. Refer to Section 3.4.

3. The dominant manufacturing process is shown in the table; note, however, that ECF and fluorotelomerization have both been, and continue to be, used for the production of select PFAS.

Sources: Prevedouros et al. 2006; Concawe 2016; Chemours 2017; Gore-Tex 2017; US Naval Research Academy 2017

Source: ITRC Factsheet, History and Use of Per- and Polyfluoroalkyl Substances (PFAS)

Commercial and Consumer Products Containing PFAS:

- paper and packaging
- clothing and carpets
- outdoor textiles and sporting equipment
- ski and snowboard waxes
- non-stick cookware
- cleaning agents and fabric softeners
- polishes and waxes, and latex paints
- pesticides and herbicides
- hydraulic fluids
- windshield wipers
- paints, varnishes, dyes, and inks
- adhesives
- medical products
- personal care products (for example, shampoo, hair conditioners, sunscreen, cosmetics, toothpaste, dental floss)

Environmental and Human Impacts

PFAS are persistent in the environment

Humans are often exposed to PFAS through food, dust, consumer products, clothing, and water

Half life in humans is several years (slow elimination)

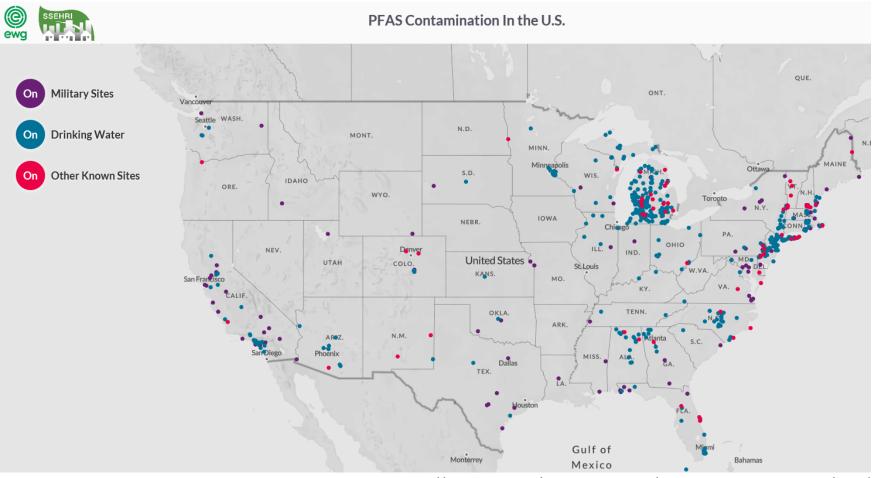
Exposure is cumulative

Longer-chain molecules bioaccumulate more than shorter chain molecules

Phase-out of PFOS and PFOA

Manufacturers simply switch to shorter chain PFAS

Short-chain PFAS are MORE CHALLENGING to treat

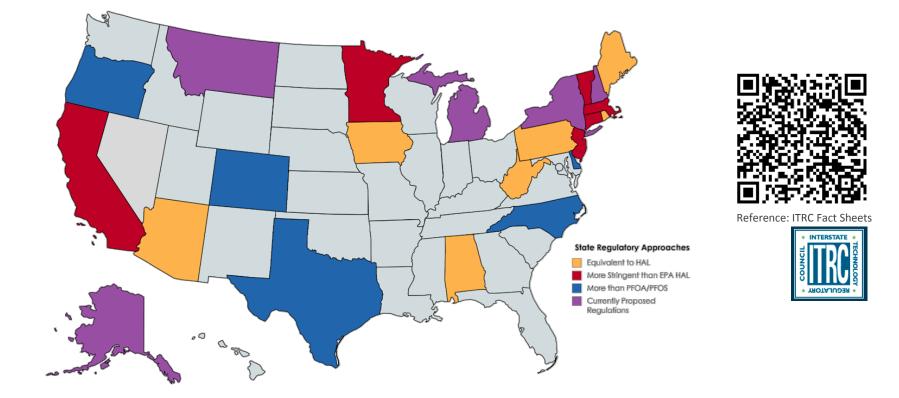


Health Effects

Reproductive and developmental, liver and kidney, and immunological effects in laboratory animals. Both chemicals have caused tumors in animal studies. The most consistent findings from human epidemiology studies are increased cholesterol levels among exposed populations, with more limited findings related to:

- Infant birth weights,
- Effects on the immune system,
- Cancer (for PFOA), and
- Thyroid hormone disruption (for PFOS).

PFAS is a National Issue



https://www.ewg.org/interactive-maps/2019_pfas_contamination/map/

State PFAS Drinking Water Regulations Impact Biosolids Land Application

State	Standards/Guidelines
Alabama	Combined 70 ppt PFOA + PFOS HA (long term exposure)
Arizona	Combined 70 ppt PFOA + PFOS
California	14ppt PFOA, 13ppt PFOS Notification Limit
Colorado	Combined 70 ppt PFOA + PFOS (HA and GWQ standard)
Connecticut	70 ppt total Alert Level (PFOS, PFOA, PFNA, PFHxS, PFHpA)
Delaware	Combined 70 ppt PFOA + PFOS HA (PFBS GW standard)
lowa	Combined 70 ppt PFOA + PFOS (GW standard)
Maine	Combined 70 ppt PFOA and PFOS
Massachusetts	70 ppt total Guidance Values (PFOS, PFOA, PFHxS, PFNA and PFHpA)
Michigan	Combined 70 ppt PFOA and PFOS, 11ppt PFOS in Surface Water
Minnesota	35 ppt PFOA, 27 ppt PFOS Health Based Levels (+ PFBA, PFBS, PFHxS*)
Montana	Health Advisory for PFOA (41 ppt), PFOS (41 ppt), PFOA + PFOS < 70ppt
New Hampshire	Proposed MCL for PFOA (38), PFOS (70), PFOA + PFOS <70, PFNA (23) and PFHxS (85)
New Jersey	14 ppt PFOA (MCL), 13 ppt PFOS (MCL), 13 ppt PFNA (MCL)
New York	MCL expected soon (10 ppt PFAS, 10 ppt PFOA)
North Carolina	Health Goal:140 ppt GenX
Pennsylvania	Combined 70 ppt PFOA + PFOS HA (MCL under review*)
Rhode Island	Combined 70 ppt PFOA + PFOS HA
Vermont	Proposed Preventative Action Limit - 20 ppt total for 5 PFAS (PFOA, PFOS, PFHxS, PFHpA, and PFNA)
West Virginia	Combined 70 ppt PFOA + PFOS HA

No Consistent Regulatory Approach

22 States have or are considering specific guidance or regulations related to PFAS in Drinking Water and/or Groundwater (Beyond EPA HAs)

Recent Developments That may Result in Additional Challenges for Biosolids Land Application

The EPA OIG Report

Are Biosolids Safe? Are the Current Part 503 Regulations Protective of Human Health and the Environment?

Cleaning up and revitalizing land

EPA Unable to Assess the Impact of Hundreds of Unregulated Pollutants in Land-Applied Biosolids on Human Health and the Environment

Report No. 19-P-0002

November 15, 2018

Un-regulated Pollutants in Biosolids

• Un-regulated pollutants include:

The EPA identified 352 pollutants in biosolids but cannot yet consider these pollutants for further regulation due to either a lack of data or risk assessment tools. Pollutants found in biosolids can include pharmaceuticals, steroids and flame retardants.

EPA OIG Report dated Nov 15, 2018

- Pharmaceuticals (e.g., ciprofloxacin, diphenhydramine and triclocarban);
- Steroids and hormones (e.g., campesterol, cholestanol and coprostanol);
- Flame retardants. Perfluoroalkyl substances (PFAS)
- Of the 352 biosolids pollutants:
 - 32 are hazardous wastes under RCRA (four of which are acutely hazardous)
 - 35 are EPA priority pollutants.
 - 16 are NIOSH hazardous drugs.

Evolving Regulatory Environment!

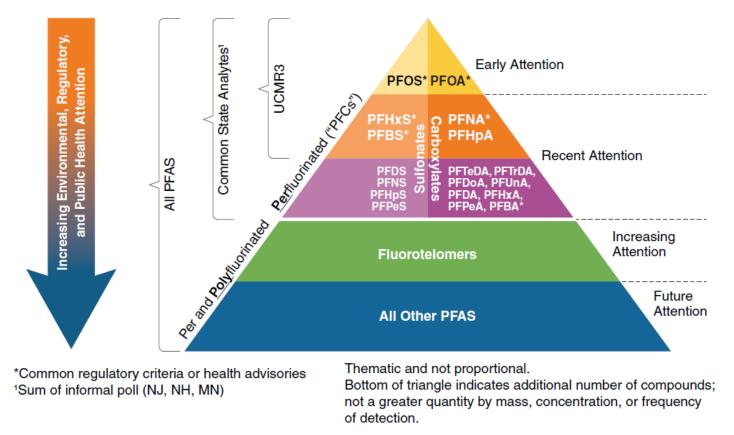


Figure 3-1. Emerging awareness and emphasis on PFAS occurrence in the environment (Source: J. Hale, Kleinfelder, used with permission)

Source: ITRC Factsheet, History and Use of Per- and Polyfluoroalkyl Substances (PFAS)

State of Maine Imposes a Moratorium on Biosolids Land Application – March 22, 2019

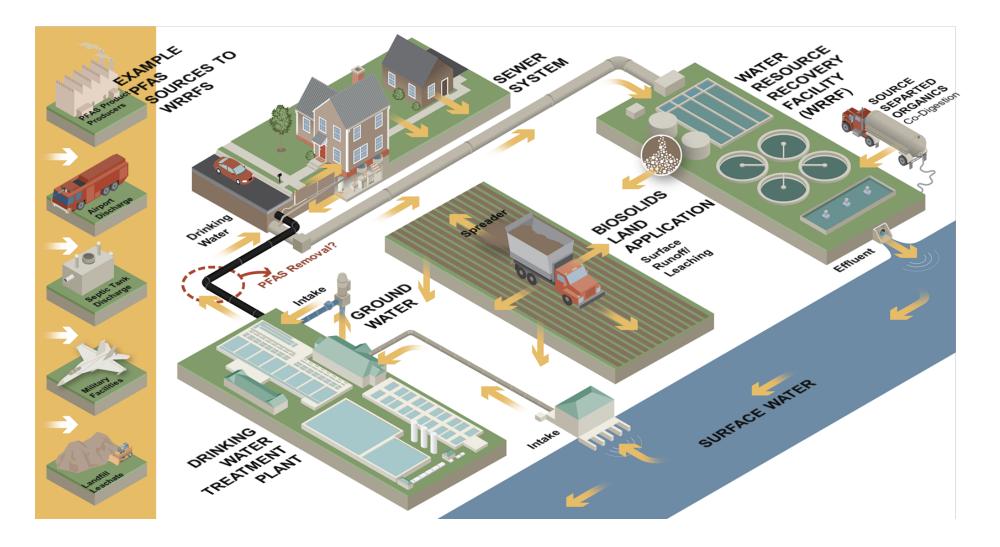
Testing of PFAS (PFOA, PFOS and PFBS) required for all biosolids to be land applied

Initial sampling and testing completed by May 7, 2019

Screening Concentrations for PFAS in Biosolids (Maine)					
PFOA	0.0025 mg/kg				
PFOS	0.0052 mg/kg				
PFBS	1.9 mg/kg				

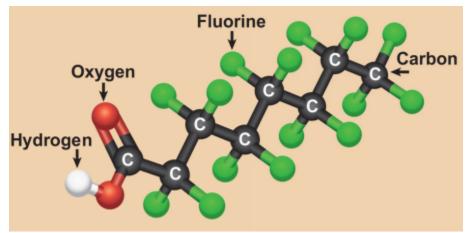
Other New England and northeast states may consider restrictions on biosolids land application

Biosolids Disposal in Landfills

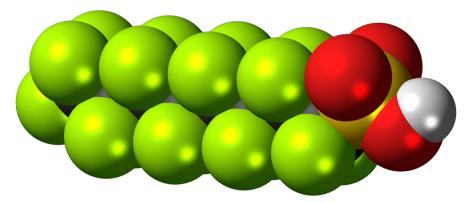

- State level pressures
 - Organic waste diversion
 - Land application limitations
 - Landfill capacity limitations

- Pressure from landfill operators
 - Odors
 - Workability
 - High costs
 - Quantities that can be accepted
 - Nutrients and PFAS

PFAS is Ubiquitous - Where should it be Removed?

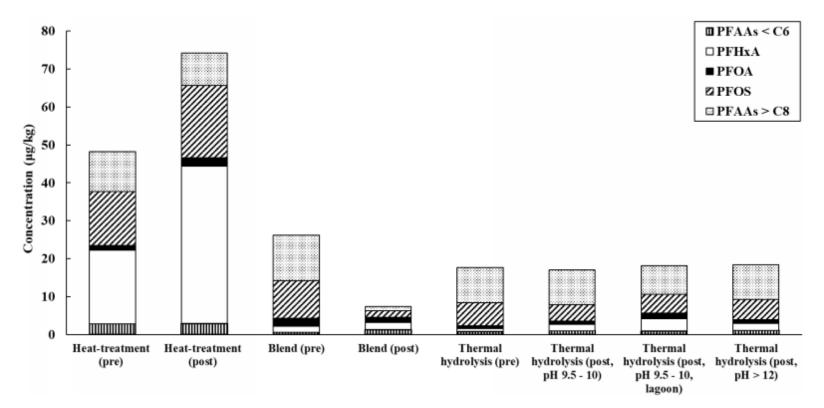

Treating PFAS Chemical – Difficult to Treat!

Terminal PFAAs are extremely *stable* compounds


Strong *C-F bond*, and *carbon shielding*

Thermal destruction (mineralization) require temperatures greater than 1,000°C (1,832°F).

Chemical hydrolysis, oxidation and reduction is challenging due to the *fluorine effect!*



Perfluorooctanoic Acid (PFOA)

Fate of PFAS through Biosolids Treatment Processes

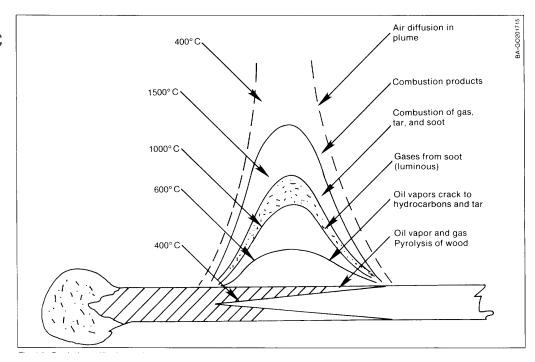
Total PFAA Concentrations (μg/kg, dry wt.) for the < 2 mm Fraction of Fertilizers Pre- and Post-Treatment

Source: Per- and Polyfluoroalkyl Substances in Commercially Available Biosolids-Based Fertilizers: The Effect of Post-Treatment Processes; by Rooney Kim Lazcano, Chloe de Perre, Michael L. Mashtare and Linda S. Lee. Presented at the WEF/IWA Residuals and Biosolids Conference 2019.

Thermal Processes

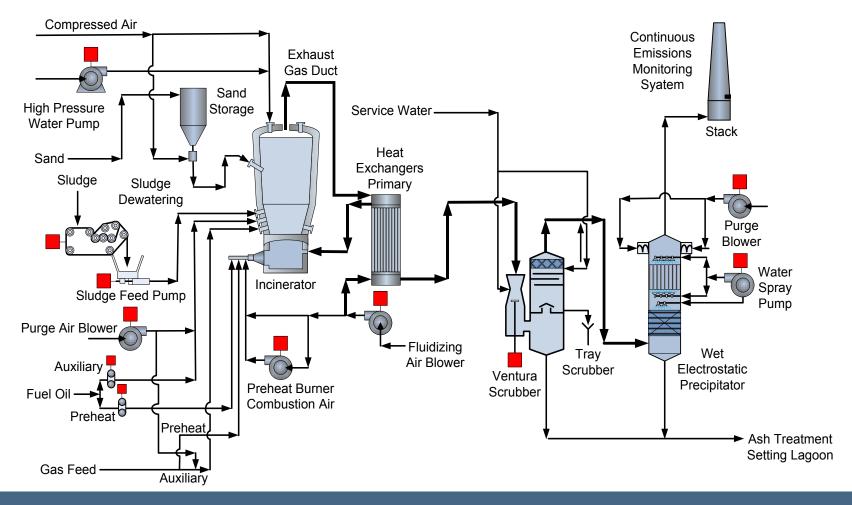
Potential to Treat/Destruct/Remove PFAS from Biosolids

Combustion:


Biomass +Stoichiometric Oxygen \rightarrow Hot combustion products

Pyrolysis:

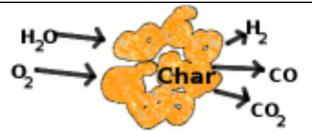
Biomass + Heat \rightarrow Biochar, oil, gas


Gasification:

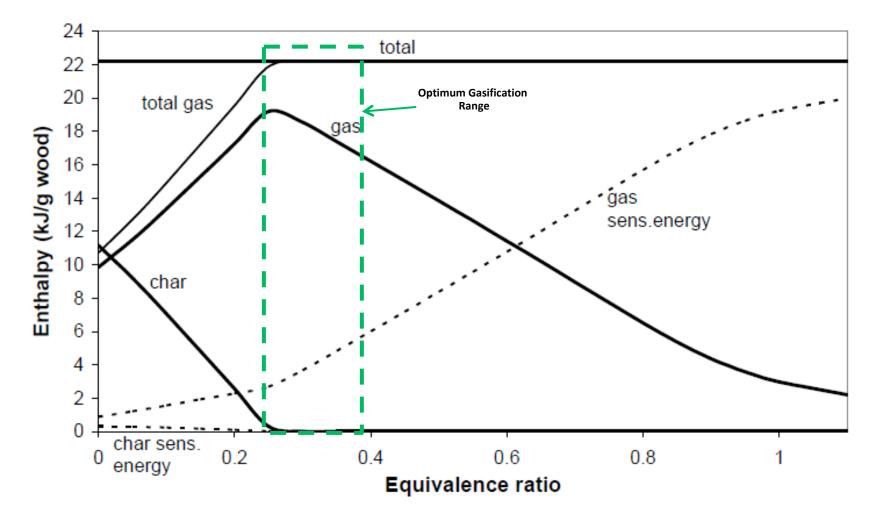
Biomass + Limited Oxygen \rightarrow Syngas, Biochar

Sewage Sludge Incineration

Municipal wastewater sludge incinerators typically operate at **1,450°F** to **1,550°F**.

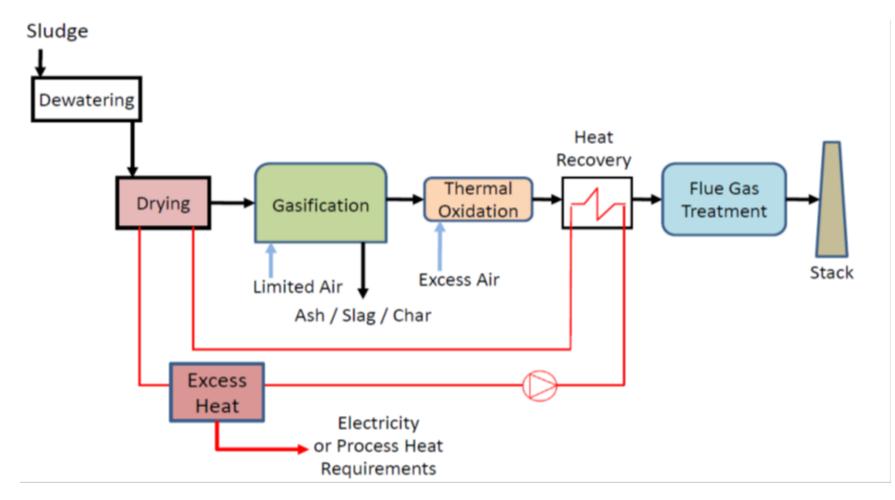


Gasification and Pyrolysis


Emerging Thermal Processes

Technologies that use advanced thermal and chemical processes to convert the carbon-based fraction of a waste stream into a renewable fuel (syngas) which can then be used to produce heat, electricity, chemicals and/or liquid fuels

Technologies					
Gasification	Pyrolysis				
1,400 – 2,500°F	750 – 1,650°F				
Limited supply of oxygen	In absence of free oxygen				
Ash with some char	Char				



Energy Balance – Gasification using Air

Source: Prins, M.J., Thermodynamic analysis of biomass gasification and torrefaction, 2005

Closed Couple Gasification System Reaching Commerical Scale

Biosolids Gasification and Pyrolysis Facilities Across US

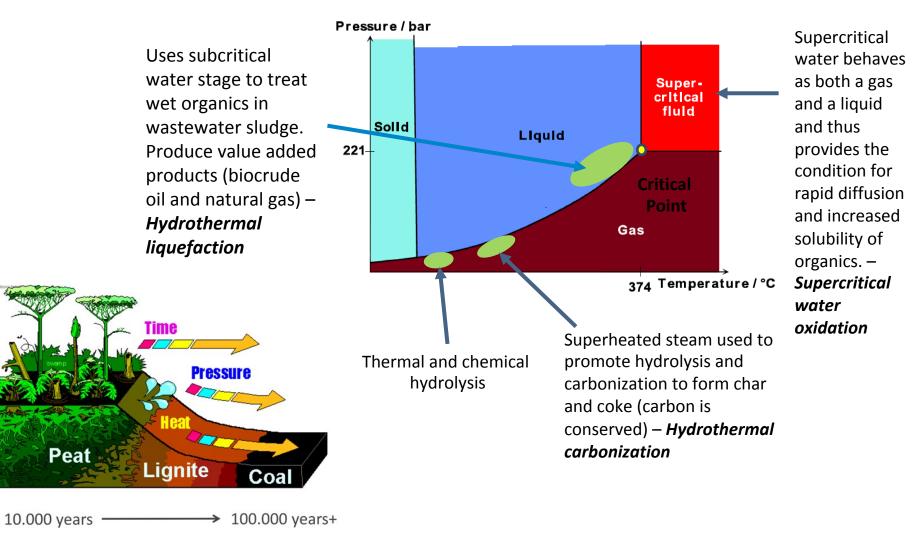
Silicon Valley Clean Water, CA – Biologicial Drying + Pyrolysis Courtesy: **BioForceTech Corporation**

Linden Roselle Sewerage Authority, NJ – Gasification Courtesy: **Aries Clean Energy**

Morrisville, PA – Drying + Gasification Courtesy: **Ecoremedy, LLC**

Biochar Provides Diversification

Use	Biochar	Biosolids Cake	
Landfill	X	X	
Soil Amendment	X	X	
Potting Soil	X		
Fuel Source	X		
Mine Reclamation	X	X	
Retail Sale	X		
Nutrient Recovery	X	X	
Insulation	X		
Air and Water Purification	X		


Can Emerging Technologies Help Treat PFAS in the Future?

Produce better quality, stable and marketable biosolids, and diversification to produce valuable products!

Wet Solids Based Technologies

- Hydrothermal liquefaction
- Hydrothermal carbonization
- Thermal hydrolysis (intermediate and post anaerobic digestion)
- Thermal and chemical hydrolysis
- Supercritical water oxidation

Can Wet Solids Based Technologies Treat PFAS?

Take Aways

• Near to short term (up to 2021/2022)

- Plan for increase in biosolids management costs. *Flexibility* is key as biosolids end use outlets will reduce or will be farther away.
- Investigate sources of PFAS to your WRRF
- Is source control an option?
- Regulatory environment for biosolids is uncertain
- Public outreach program to address potential citizen concerns
- If biosolids are land applied than consider demonstrating that land application is not impacting ambient soil and ground water quality

Long Term

- Effective source control
- Thermal technologies (incineration, gasification, pyrolysis) and other emerging technologies likely to gain attention to treat PFAS
- Interest in high quality biosolids or value-added products (biochar, biooil, etc.)

Acknowledgements

Mohammad Abu-Orf, PhD, Hazen and Sawyer Deborah Mahoney, Hazen and Sawyer Christine Owen, Hazen and Sawyer Eric Rosenfeldt, PhD, Hazen and Sawyer Christine Thorton, Hazen and Sawyer Northeast Biosolids and Residuals Association

Thank You

Jay Surti, PE

jsurti@hazenandsawyer.com

Direct: (732) 491-2817

Cell: (973) 953-9888