

2019 NEWEA, NEBRA, and MWPCA Biosolids Conference

# Initial Co-Digestion Feasibility Study at the Rockland WWTP



October 17, 2019 - Springfield, MA







Rockland, MA Case Study

# Rockland, MA WRRF

- Managed by Town of Rockland Sewer Dept (SUEZ contract ops)
- Avg. Annual Flow: 2.5 MGD
- One of six WRRFs with AD in Mass





# MassCEC Organics-to-Energy Program

- Supports the development of facilities that convert sourceseparated organic materials and sewage sludge into heat, electricity and/or compressed natural gas
- Published >10 studies since program creation in 2012
- Three stages of funding
  - Feasibility Study

Max Grant Level: \$60K

- Technical Study
- Implementation and Pilot Project



## **Co-digestion opportunities at smaller WRRFs**

| Electricity generation<br>from WRRF sludge<br>with MAD + ICE |                                                  |                                                |  |
|--------------------------------------------------------------|--------------------------------------------------|------------------------------------------------|--|
| 2                                                            | .5 MGD / 2.5 DTPD                                | +65 kW                                         |  |
| WRRF Electricity Usage,<br>kWh/MG                            | Remaining Electricity<br>Demand (Annual Avg), kW | Trucks /d to achieve 100%<br>Elec. Neutrality* |  |
| 1,200                                                        | 60                                               | 1                                              |  |
| 1,500                                                        | 95                                               | 1.5                                            |  |
| 1,800                                                        | 125                                              | 2                                              |  |

\* Assumes 6k gallon tanker truck, FOG liquid waste at 5% TS

## **Co-digestion opportunities at smaller WRRFs**



\* Assumes 6k gallon tanker truck, FOG liquid waste at 5% TS

# Looking past increased gas production





# **Co-digestion feasibility study framework**



## Plant Operations Current Conditions/Benchmarking



## **Residuals Management** Limited by existing state of equipment

- Current residuals generation: ~5 wtpd at 19%TS using belt filter press
- Difficult to maintain digestion temperatures required for Class B requirements
  - Co-settled PS and WAS feed is relatively thin (~2.4% TS) and variable given seasonal loading
- Hauled under long-term agreement to multiple disposal sites (incineration and landfill)
  - At time of study: \$100/ton, has since increased to \$111/ton

## Plant Operations State-of-good-repair projects required

- Mechanical WAS Thickening
  - Unlock digester capacity, control heat load
- Digester Rehabilitation
  - Covers, heat, mixing
- Digester Gas Management
  - Update to design codes and standards
  - Provide short-term storage
  - Change out all CS piping
- Blend tank
  - Homogenize loading to digester

# Plant Operations

### **Project scope evaluated at varying scales**



\* Assumes 6k gallon tanker truck, FOG liquid waste at 5% TS

## **Tipping Fees** Organics Market Assessment





- Targeted outreach to 16 potential, liquid HSW sources
  - **Primary Generators:** production/ manufacturing facilities
  - Indirect Sources: hauling companies/brokers
- Typical Liquid HSW Sources
  - Hydrophilic Non Oily
    - Expired soda, whey, food/ beverage production
  - Hydrophobic Oily
    - DAF waste, dairy/meat processing waste, FOG

## **Tipping Fees** Positive response from 16 potential sources

- Interest gauged on specific drivers
  - Cost reduction
  - Disposal reliability
  - Sustainability initiatives
- Results
  - Significant interest current market for rate of disposal of organic wastes ranges from \$0.06 to \$0.10 per gallon, depending on waste type

## **Biogas Utilization** Universe of Alternatives



#### Generate Power and Heat On-Site

- Gas Turbine Generators
- IC Engine Generators
- Fuel Cells
- Microturbines
- Stirling Cycle Engines
- Organic Rankine Cycle

# **Biogas Uses**



- Boiler/Heat (hot water, steam)
- Product drying (via steam, hot air/oil/water)



#### **Off-Site Sale/Use**

- "As-Is" Unscrubbed
- Scrub CO<sub>2</sub>, biomethane pipeline injection
- Scrub CO<sub>2</sub>, Vehicle Fuel (rCNG)

## **Biogas Utilization**

Kilowatts, therms, gallons ... How do you compare value?

Relative value of energy (adjusted for conversion efficiency)



Rockland goal: onsite power generation

- Gas upgrading introduced too many variables at this stage

## **Biogas Utilization** Projecting value of onsite power generation

- Parse apart usage charge from power bill (\$0.14/kWh)
  - Disregard non-bypassable and standby charges
  - Potential to limit demand charge
- Calculate value from electricity export
  - National Grid has met net metering quota in area
  - Electricity sold back at wholesale rate of \$0.035/kWh
- Consider opportunities for regional and state incentives
  - National Grid Power Offset: \$0.075/kWh
  - REC value determined under Renewable Portfolio Standard

## **Biogas Utilization** Renewable Portfolio Standard

- Requirement on retail electric suppliers to provide a minimum percentage or amount of their retail load with eligible sources of renewable energy
- Renewable energy certificate (REC) program to facilitate compliance
  - NE states participate in a single power pool



REC value projected at all-time low at time of study (\$0.005/kWh). MA and ME have since increased RPS targets/ demand.

## **First Cut Financial Evaluation** 20-Yr NPV shows counter-intuitive results



## What's limiting O&M benefits? Residuals Management Costs increase



## Impact of Revenue Limited with electricity export

| Revenue                     | Planning<br>Baseline | Alt A:<br>No Organics | Alt B:<br>Moderate<br>Organics | Alt C:<br>Aggressive<br>Organics |
|-----------------------------|----------------------|-----------------------|--------------------------------|----------------------------------|
| Annual Avg.<br>Production   | 0                    | 80 kW                 | 300 kW                         | 500 kW                           |
| Electricity Offset/<br>Sale | \$0                  | \$220,000             | \$440,000                      | \$580,000                        |
| Organics Tipping<br>Fees    | \$0                  | \$0                   | \$370,000                      | \$770,000                        |

These are rough estimates based on experience. The ultimate values may vary a little or moderately depending on regulatory impacts, inflation or local impacts.

## **Tipping fee increases provide better alingment**





# Substantial swing in economics available with improved residuals management costs

## Comparison of Alt C (30k gpd) to Do-Nothing

|                         | Residuals Management Cost (\$/wet ton) |                         |                   |                   |  |
|-------------------------|----------------------------------------|-------------------------|-------------------|-------------------|--|
|                         |                                        | \$100<br>(Raw disposal) | \$80<br>(Class B) | \$60<br>(Class B) |  |
| Feedstock<br>%VS / %VSR | 85% / 85%                              | +\$4.9M                 | +\$3.4M           | +\$2.0M           |  |
|                         | 90% / 90%                              | +\$1.6M                 | +\$0.6M           | -\$0.3M           |  |
|                         | 95% / 95%                              | -\$1.8M                 | -\$2.4M           | -\$2.8M           |  |
|                         |                                        |                         |                   |                   |  |

# Conclusions

- Plant Operations
  - Co-digestion requires integration with state-of-good-repair projects
- Tipping Fees
  - Economics impacted by HSW disposal market; saw interest in project with some variability in pricing
- Biogas Utilization
  - With power generation, revenue limited with electricity export
- Residuals Management
  - Improved residuals management rate with readily degradable feedstocks required for favorable economics at increased HSW loading

# Acknowledgements



#### **Town of Rockland**

John Loughlin Superintendent Rick Kotouch Plant Ops PM (SUEZ) Ed Mcauliffe Plant Ops (SUEZ)

#### **Brown and Caldwell**

Chris Muller Principal Engineer Natalie Sierra Senior Review Tracy Chouinard Process Model Lead Alison Nojima Energy Lead Camilla Kuo-Dahab Sidestream impacts



# Thank you

John Ross, PE jross@brwncald.com T 978.983.2030 | C 617.383.4962

