

Session 4: PFAS Disposal and Destruction Research

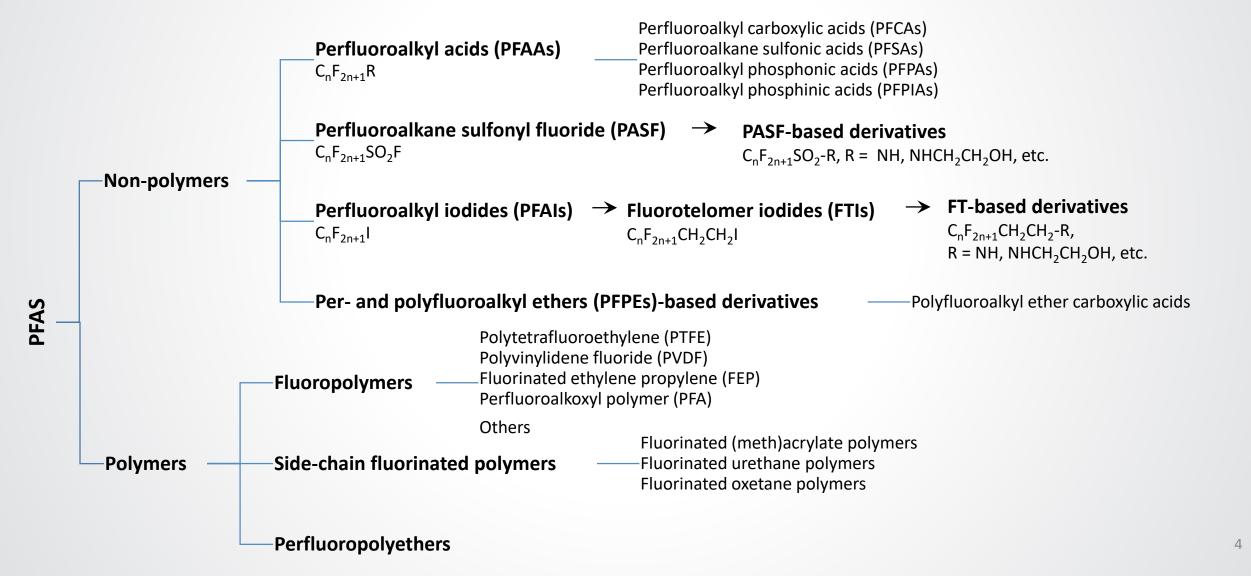
Lara Phelps US EPA Office of Research and Development

PFAS Science Webinars for Region 1 and New England States & Tribes

September 23, 2020

Potential Sources of PFAS in the Environment

S-PA

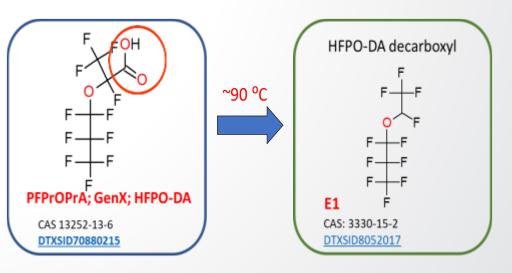

- Direct release of PFAS or PFAS products into the environment
 - Use of aqueous film forming foam (AFFF) in training and emergency response
 - Industrial facilities
 - Incineration/thermal treatment facilities
- Landfills and leachates from disposal of consumer and industrial products containing PFAS
- Wastewater treatment effluent and land application of biosolids

Air Emissions Contribute to PFAS Concentrations Air emissions Wind transport Wet Scavenging Dry deposition 24 Runoff Fluoropolymer River manufacturing, Migration Well using, or treatment

facility

Adapted from: Davis, K. et al. Chemosphere, 2007.

Thousands of chemicals can potentially become air sources during production, use and disposal of PFAS-contaminated materials


EPA PFAS Air-Related Research

- Analytical Methods to detect, identify and quantify PFAS in emissions and ambient air
- Dispersion Modeling to predict air transport and deposition associated with air sources
- Effectiveness of Thermal Treatments for destroying PFAS materials

Thermal Treatment of PFAS

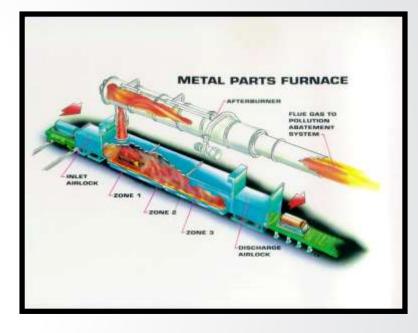
- Highly electronegative fluorine (F) makes carbon/fluorine (C-F) bonds particularly strong, require high temperatures for destruction
 - Unimolecular thermal destruction calculations suggest that CF₄ requires 1,440 °C for >1 second to achieve 99.99% destruction (Tsang et al., 1998)
 - Sufficient temperatures, times and turbulence are required
- Functional group relatively easy to remove/oxidize
 - Low temperature decarboxylation is an example
 - Information regarding potential products of incomplete combustion (PICs) is lacking

🔅 FPA

Products of Incomplete Combustion (PICs)

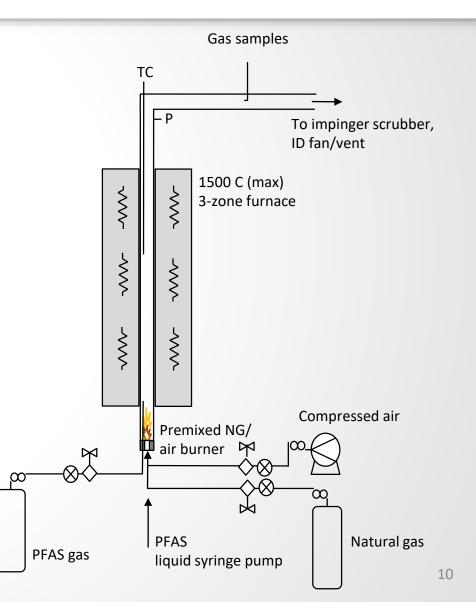
- When formed in flames, F radicals quickly terminate chain branching reactions to act as an extremely efficient flame retardant, inhibiting flame propagation
- PICs are more likely formed with F radicals than other halogens such as chlorine (CI)
- PICs may be larger or smaller than the original fluorinated Principal Organic Hazardous Constituents (POHC) of concern
 - CF₂ radicals preferred and relatively stable, suggesting the possibility of reforming fluorinated alkyl chains
 - Remaining C-F fragments may recombine to produce a wide variety of fluorinated PICs with no analytical method or calibration standards
 - May result in adequate PFAS destruction but unmeasured and unquantified PICs
- Very little information is published on PFAS destruction
 - Fluorine chemistry sufficiently different than Cl that we cannot extrapolate
 - Analytical methods and PFAS standards are minimal with more needed
 - Measurements focusing on POHC destruction may miss the formation of PICs
- Hazardous waste incinerators and cement kilns may well be effective, but what about municipal waste combustors and sewage sludge incinerators (i.e., lower temperatures)?

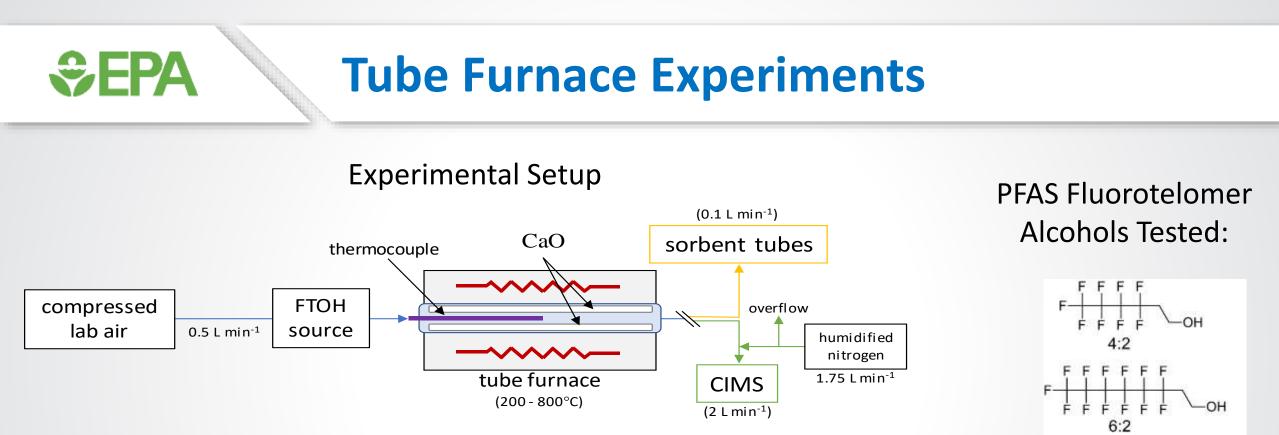
Incinerability & Mitigation Research


- Explore minimum conditions (temperature, time, fuel H₂ or hydrogen gas) for adequate PFAS destruction
- Investigate relative difficulties in removing PFAS functional groups (POHC destruction) vs. full defluorination (PIC destruction)
- Effects of incineration conditions (temperature, time and H₂) on PIC emissions
- Examine relative differences in the incinerability of fluorinated and well studied corresponding chlorinated alkyl species

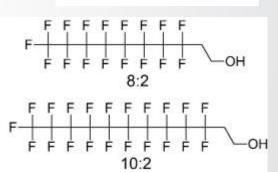
CFS Software for EPA Reaction Engineering International (REI)

• The Configured Fireside Simulator (CFS)


- Developed for the Department of Defense to evaluate operations of the chemical demilitarization incinerators processing the US chemical warfare agent stockpile
- Destruction kinetics developed
- Adapted to provide for the ability to run "what if" scenarios of waste streams contaminated with chemical and biological warfare agents
 - EPA's pilot-scale Rotary Kiln Incinerator Simulator (RKIS)
 - Three commercial incinerators based on design criteria for actual operating facilities
 - Medical/Pathological Waste Incinerator
 - Hazardous Waste Burning Rotary Kiln
 - Waste-to-Energy Stoker type combustor
- CFS uses chemical kinetic data for destruction derived from bench- and pilot-scale experiments at EPA's Research Triangle Park, NC facility

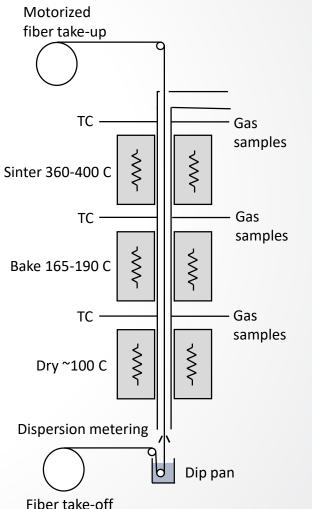


€EPA


Bench-scale Incineration Experiments

- Repurpose existing equipment (i.e., formerly used for oxy-coal)
- Small scale (L/min & g/min)
- Full control of post-flame temperature & time (2-3 sec)
- Able to add either gas or liquid PFAS through or bypassing flame
- Premixed or diffusion flames possible
- Platform for measurement methods development (e.g., SUMMA, sorbent, total F, Gas Chromatography – Electron Capture Detector (GC/ECD), real-time instruments)

- Thermal treatment with calcium oxide (CaO) from 250 to 800 °C
- Observe destruction of parent compound using two techniques: CIMS and sorbent tube analysis by thermal desorption—gas chromatography—mass spectrometry (TD-GC/MS)
- TD-GC/MS analyses show the presence of degradation products from fluorotelomer alcohols (FTOH) destruction

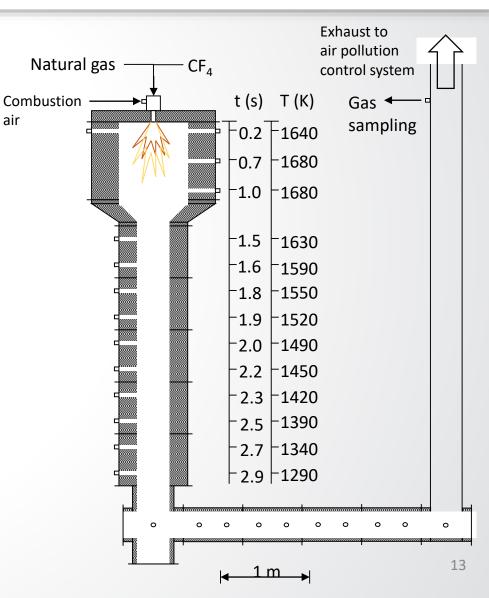

String Reactor Experiments


• New experiment that simulates industrial PFAS coating facilities

• Built from 3 existing furnaces

EPA

- Applies commercial dispersions to fiber (string)
- Full control of flows, times, temperatures, application rates
- Small scale (L/min & g/min)
- Located in lab w/ real-time instruments
- Investigates key research questions:
 - What PFAS & additives are present in different commercial dispersions?
 - What PFAS (and other species) are vaporized during application processes?
 - How do vapor phase PFAS emissions compare to dispersion compositions?
 - Are surfactants (GenX, telomer alcohols) included in the vapor emissions?
 - Are processing temperatures sufficient to transform PFAS?
 - Cleave functional groups to produce new PFAS?
 - Are processing temperatures sufficient to cleave C-F bonds and produce fluorine (F2) and hydrogen fluoride (HF)?
 - How do processing temperatures and times affect vapor and aerosol emissions (mass and composition)?



Pilot-scale Incineration Experiments

 65 kW refractory lined furnace (aka Rainbow Furnace) with peak temperatures at ~1400 °C, and >1000 °C for ~3 sec

SFPA

- Combustor connected to facility air pollution controls
 - Afterburner, baghouse, NaOH (sodium hydroxide) scrubber
- Introduce C1 and C2 fluorinated compounds with fuel, air, post flame to measure POHC destruction and PIC formation
 - FTIR (Fourier-transform infrared spectroscopy) and other real-time and extractive methods
- Add modeling component using REI's Configured Fireside Simulator (CFS) CFD/kinetic model to include C1 & C2
 - F chemistry from literature (Burgess et al. [1996])

PFAS Innovative Treatment Team (PITT)

- Full-time team that brings together a multi-disciplined research staff
- <u>Charge</u>: How to remove, destroy and test PFAS-contaminated media and waste
- <u>Goals</u>:
 - Assess current and emerging destruction methods being explored by EPA, universities, other research organizations and industry
 - Explore the efficacy of methods while considering byproducts to avoid creating new environmental hazards
 - Evaluate methods' feasibility, performance and costs to validate potential solutions
- <u>Expected Results</u>: States, tribes and local governments will be able to select the approach that best fits their needs, leading to greater confidence in cleanup operations and safer communities
- <u>Deadline</u>: Later this year

Non-Incineration Technologies Reviewed

- Chemical
- Biological
- Plasma
- Mechanochemical
- Sonolysis
- Ebeam
- UV
- Supercritical water oxidation
- Deep well injection
- Sorption/stabilization
- Electrochemical
- Landfill
- Land application

Assessment Factors:

- Technology readiness
- Applicability
- Cost
- Required development remaining
- Risk/reward of technology adoption

Innovative technologies selected for further investigation.

Planned Products

ORD Products on Fundamental Understanding of Thermal Treatment

- Thermogravimetric Analysis/Mass Spectrometry (TGA/MS)Thermal Destruction Temperature Points with Off Gas Measurements on Potential Defluorination
- PFAS Model Incorporation of Published C1 and C2 Fluorocarbon Kinetics to Predict Simple PFAS Behavior in Incineration Environments
- Low Temperature Interactions of PFAS with Sorbents from Bench-Scale Experiments
- Thermal Destruction of PFAS from Pilot-Scale Experiments

ORD Measurement Methods for PFAS

- Quantitative Assessment of Modified Method 5 Train for Targeted PFAS
- PFAS Method OTM 45
- Total Organic Fluorine Methods
- Non-targeted Measurement Approaches to Identify PFAS

Other Contributions

• Supporting Incineration Guidance as part of the National Defense Authorization Act

For More Information

- The research discussed in this presentation is part of EPA's overall efforts to rapidly expand the scientific foundation for understanding and managing risk from PFAS.
- For more information on EPA's efforts to address PFAS, please visit the following websites
 - EPA PFAS Action Plan <u>https://www.epa.gov/pfas/epas-pfas-action-plan</u>
 - EPA PFAS Research <u>https://www.epa.gov/chemical-research/research-and-polyfluoroalkyl-substances-pfas</u>

Contact

Lara Phelps

Director Air Methods and Characterization Division Center for Environmental Measurement and Modeling US EPA Office of Research and Development 919-541-5544 Phelps.Lara@epa.gov

The views expressed in this presentation are those of the individual author and do not necessarily reflect the views and policies of the US EPA.