

Motivation for the today's talk

- In conventional wastewater treatment, regular sludge wasting is necessary
- Sludge: nutrients, organic matter, and energy
- However, sludge is traditionally considered nuisance materials
- Sludge management causes the highest operational cost for WWTPs
- What about decreasing sludge production? This may be potentially an important issue for:
 - WWTPs that do not have anaerobic digesters
 - Sludge disposal in remote places
- ➤ I have had meetings with several groups interested in this approach

Schematic of the ASSR Process

Stable System Performance

Chon et al. (2011) Water Research

Digest Sludge Aerobically or Anaerobically?

Composition of flocs

- > Cells
- > Extracellular polymeric substances (EPS)
- Cations
- > Other inorganics

High-rate ASSR process

Previous ASSR System

High-Rate ASSR

Motivation for Developing a High-rate ASSR

- Unique sludge (WAS) hydrolysis occurs during short-term anaerobic digestion
 - > Behavior of floc cations
 - ➤ Release of protein-degrading enzymes
- You can have more compact ASSR system
 - ✓ 10 d vs. 2 d

Release of Key Floc Components

Park and Chon (2015) Water Environment Research

Controlled Reactor Study

- Operation of bench-scale reactor systems
 - 10 d ASSR (RT)
 - 2 d ASSR (RT, 37 C, 55 C)
 - Control activated sludge
- Used primary effluent

Comparison of Sludge Yields

$$Y_{obs} = \frac{\Delta X}{\Delta S} = \frac{\text{the amount of biomass produced}}{\text{the amount of substrate removed}}$$

Observed sludge yield (lb VSS/lb COD)

> ASSR 10 d RT: 0.25

> ASSR 2 d Meso: 0.18

Control AS: 0.44

SVI

Batch Anaerobic Digestion of Activated Sludge

Activated sludge	% VS reduction	Biogas (mL)	% CH ₄	m ³ CH ₄ /kg VS _{red}
Control	24	255	4	5
From ASSR	24	1180	47	226

12

Conclusions

- A High-rate ASSR (2 d) is feasible
 - ✓ Significantly decreased sludge production
 - ✓ Effective sludge settling and good effluent quality
 - ➤ Unique biochemical reactions occur for activated sludge during the short period of anaerobic digestion (~ 2 d)
- 2 d ASSRs (mesophilic) generates a meaningful amount of CH₄
- Activated sludge biomass in the ASSR process contains significant anaerobic microbial community → Potential seed for conventional ADs

Generation of CH₄ from a Small ASSR

- 2 d mesophilic ASSR started producing biogas from day 40
 - Biogas yield: $0.33 \text{ m}^3/\text{kg VSS}_{\text{red}}$ ($\sim 0.41 \text{ m}^3/\text{kg VS}_{\text{red}}$)
 - 25-32% VSSR in 2d mesophilic ASSR
 - Cf (M&E): 0.75-1.12 m3/kg VS red
- How is this possible?
 - Both aerobic and anaerobic community are enriched in single sludge consortia and get activated immediately in designated environments

System Performance

Aerobic-Anaerobic Sludge

Activated sludge	% solids reduction	Gas volume generated (mL)	% CH ₄	m ³ CH ₄ /kg VS _{red}
Control	24	255	4	5
From ASSR	24	1180	47	226

SVI

