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  A system is more than the sum of its parts. 
 
     - Aristotle (384-322 BC) 



New concepts 
• Fit for purpose 

–  Water reuse 

• Source separation and resource recovery 
–  Nutrient recovery 
–  Energy recovery 
  

• Decentralization 

 
2 



3 



4 

• Population: 5,600 

• Flow Capacity: 1 MGD 

• Legacy WWTP: CAS 

• Upgraded WWTP: MLE  

  biological treatment 

MGD – Million gallons per day 
WWTP – Wastewater Treatment Plant 
CAS – Conventional Activated Sludge 
MLE – Modified Ludzack-Ettinger  

Bath NY Community & 
Wastewater Treatment 
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Bath NY Community & 
Wastewater Treatment 

– Bath wwtp 
– Food manufacturers 
– Beverage manufacturers 

• Population: 5,600 

• Flow Capacity: 1 MGD 

• Legacy WWTP: CAS 

• Upgraded WWTP: MLE  

  biological treatment 

MGD – Million gallons per day 
WWTP – Wastewater Treatment Plant 
CAS – Conventional Activated Sludge 
MLE – Modified Ludzack-Ettinger  
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Upgraded System Diagram 
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• Comparative analysis of legacy and upgraded 
WWTPs 
• Energy recovery potential and avoided product 
benefits of Anaerobic Digestion (AD) and land 
application of compost 
–  Effect of adding High Strength Organic Waste 
(HSOW) 

• Calculate life cycle costs of upgraded system 

Bath NY Community & Wastewater 
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* SPDES – State Pollutant Discharge Elimination System 

Influent & Effluent Characteristics 

Characteristic  
Influent 

Effluent 
Legacy Upgraded 

(mg/L) 
Suspended Solids 437 7.9 5 
Biological Oxygen Demand 323 8.5 2.3 
Total Kjeldahl Nitrogen 56 16 4.4 

Ammonia 32 6.7 3.6 
Total Phosphorus 8 0.7 0.6 
Nitrite <1 2.8 0.8 

Nitrate <1 13 14 

Organic Nitrogen 29 9 0.8 

Total Nitrogen 61 31 20 



Select LCI Calculations 
• Electricity: calculated using a record of equipment 
use, horsepower, and run time 
• Chemicals: via provided dosage rates 
• Process GHGs 

–  N2O: based on TKN influent to secondary 
(Chandran 2012) 

–  Methane: based on BOD influent to secondary 
(IPCC 2006) 
•  Assigns methane correction factor for specific treatment units 

(Legacy – Czepiel 1993, Upgraded – Daelman et al. 2013) 
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Select LCI Calculations continued… 
• Biogas Production (Upgraded Plant) 

–  Based on Volatile Solids (VS) destruction assumption 
(ft3/day) 

• Landfill Emissions (Legacy Plant) 
–  Regional and national average gas capture 

performance 
–  Degradation via a first-order decay model 

• Composting Emissions (Upgraded Plant) 
–  Methane (0.11%, 0.82%, 2.5% of C) 
–  Nitrous Oxide (0.34%, 2.68%, 4.65% of N) 
–  Ammonia (1.2%, 6.7%, 12.74% of N) 
–  Carbon Monoxide (0.04% of C) 11  



Life Cycle Costing 
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Total Costs = Ʃ (Annual Costs) + Ʃ (Amortized Capital Costs) 
 
Total Capital Costs = Purchased Equipment Costs + Direct 
Costs + Indirect Costs 
 
Total Annual Costs = Operation Costs + Replacement Labor 
Costs + Materials Costs + Chemical Costs + Energy Costs 
 
Net Present Value=Σ(Costx/(1+i)x) 
 



Anaerobic Digestion –  
Feedstock Scenarios 

• 3 feedstock scenarios analyzed to determine variation in 
environmental and cost performance (300,000 gal tanks) 
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Waste Type 
Base 

(gal/day) 
Medium 
(gal/day) High (gal/day) 

Primary Sludge 17,654 17,654 17,654 

Waste Activated Sludge 75,557 75,557 75,557 

Septic Waste 14,000 14,000 14,000 
Slaughterhouse Waste - 1,000 4,000 
Cheese Waste - 2,000 3,000 

Winery Waste - 1,000 1,000 

Portable Toilet Waste 2,000 2,000 2,000 

Loading (lb VS/1000 ft3/day) 130 158 205 



Anaerobic Digestion Operational 
Scenarios 
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Parameter Name	

Low Yield	 Base Yield	 High Yield	

Units	Value	 Value	 Value	

Percent Volatile Solids 
Reduction	 40	 50	 60	 %	

Biogas Yield	
Base	 12.0	 15.0	 24.5	 ft3/lb VS destroyed	

Medium 	 13.8	 18.5	 25.1	 ft3/lb VS destroyed	

High	 15.7	 22.2	 27.3	 ft3/lb VS destroyed	

Methane Content of Biogas	 55	 60	 65	 % w/w	

Biogas Heat Content (MJ/ft3)	 0.59	 0.64	 0.68	 MJ/ft3	

Electrical Efficiency	 33	 36	 40	 %	

Thermal Efficiency	 46	 51	 56	 %	

Reactor Heat Loss	 Northern US	 Northern US	 Southern US	 n.a.	

Anaerobic Digestion –  
Performance Scenarios 
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Compost Emission 
Scenarios 

Emission 
Scenario	

Emission 
Species	 Element	

Loss of Incoming 
Element to GHGs	Units	

Low	 CH4	 C	 0.11%	 incoming C lost as CH4	

Low	 N2O	 N	 0.34%	 incoming N lost as N2O	

Base CH4	 C 0.48% incoming C lost as CH4	

Base N2O	 N 2.68% incoming N lost as N2O	

High CH4	 C 1.70% incoming C lost as CH4	

High N2O	 N 4.65% incoming N lost as N2O	



Eutrophication Scenarios 
Percent of Legacy System Impact 

16 

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	
100%	

Pe
rc
en

t	o
f	L
eg
ac
y	
Sy
st
em

	Im
pa
ct
	

Scenario Name: Feedstock – AD, i.e., base feedstock – base AD performance 

Chart Reading 
Example 



Eutrophication Potential 
Process Contribution 

17 

 2.4E-2 

 1.5E-2  1.4E-2 

 1.9E-2 

 0    

 5.0E-3 

 1.0E-2 

 1.5E-2 

 2.0E-2 

 2.5E-2 

 3.0E-2 

Legacy 
(Base) 

Upgraded 
(Base) 

Upgraded 
(Optimized) 

Upgraded 
(Worst Case) 

kg
 N

-e
q/

m
3 

w
as

te
w

at
er

 tr
ea

te
d 

Effluent Release 

Sludge Disposal 

Sludge Handling 
and Treatment 
Facilities 

Biological Treatment 

Preliminary/Primary 



Global Climate Change Potential 
Scenarios 
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Global Climate Change Potential 
Process Contribution 
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Cumulative Energy Demand Scenarios 
Percent of Legacy System Impact 
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Cost Analysis 
Upgraded System 
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AD and Compost Payback 

• Difficult to achieve with low acceptance of high strength 
organic waste. 
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Scenario (Feedstock 
Scenario-Anaerobic 
Digester Scenario) 

Low Cost Scenario Base Cost Scenario High Cost Scenario 

Anaerobic 
Digester 

Composting 
Facility 

Anaerobic 
Digester 

Composting 
Facility 

Anaerobic 
Digester 

Composting 
Facility 

Base Feed-Low AD None None None None None None 
Base Feed-Base AD None None None None None None 
Base Feed-High AD 72 None None None None None 

Medium Feed-Low AD None 39 None None None None 
Medium Feed-Base 
AD 271 82 None None None None 

Medium Feed-High AD 32 440 177 None None None 
High Feed-Low AD 219 11 None None None None 
High Feed-Base AD 40 13 251 None None None 
High Feed-High AD 16 18 41 None 45 None 



Summary of Relative Scenario 
Impacts 
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GCCP -41%     -    44% -57% 25% 141% -105% -28% 79% -32% 57% 183% -112% 2% 163% -139% -32% 119% -63% 61% 236% -158% 0% 222% -194% -49% 155% -117% 57% 299% 

EP 0%     -    0% -38% -37% -36% -42% -41% -40% -35% -34% -33% -36% -35% -33% -41% -40% -39% -32% -31% -29% -34% -32% -30% -42% -40% -38% -28% -26% -24% 

PMFP 2%     -    -2% 7% 11% 15% -100% -96% -92% 38% 42% 46% -34% -29% -23% -161% -156% -151% 22% 28% 34% -113% -106% -98% -287% -280% -273% -9% 0% 8% 

SFP 2%     -    -2% 7% 7% 7% -101% -101% -101% 37% 37% 38% -35% -35% -35% -163% -163% -163% 21% 21% 22% -116% -116% -116% -290% -290% -290% -11% -11% -11% 

AP 2%     -    -2% 16% 31% 46% -90% -77% -62% 47% 63% 79% -20% -1% 21% -145% -127% -107% 37% 58% 82% -93% -65% -35% -264% -239% -212% 13% 43% 76% 

WU 0%     -    0% -104% -103% -103% -108% -108% -107% -111% -111% -110% -139% -138% -137% -142% -142% -141% -148% -147% -147% -187% -187% -186% -189% -189% -188% -201% -200% -199% 

FDP 1%     -    -1% 9% 9% 9% -98% -98% -98% 68% 68% 69% -63% -63% -62% -133% -132% -132% 48% 49% 49% -112% -112% -111% -207% -207% -206% -4% -3% -2% 

CED 2%     -    -1% 5% 5% 6% -98% -97% -97% 57% 57% 58% -60% -59% -59% -136% -135% -135% 38% 38% 39% -113% -112% -112% -216% -215% -215% -10% -9% -8% 

  Legacy Baseline -38% Impact Reduction 25% Increase in Impact   
  

+/- 10% of Legacy 
-103% 

Net Negative Impact 
141% Impact More Than 

Doubled 



Conclusions 
•  Clear Environmental Benefit of HSOW Acceptance 

– Maximize use of AD capacity 

– Low AD performance (avoidable), can lead to increases in 
environmental impact 

•  Benefit to Climate Change Potential depends strongly on 
composting system selection and management 

•  Simple payback of AD is challenging to achieve at small-scale, 
but the trend is towards decreasing cost 

•  Many impact categories positively influenced by avoided 
electricity and natural gas consumption 

•  Appropriate use of AD has the potential to reduce environmental 
impacts of achieving increased nutrient removal 
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The views expressed in this presentation are those of 
the author[s] and do not necessarily represent the 
views or policies of the U.S. Environmental Protection 
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