The Northeast Residuals & Biosolids Conference

Lab-Scale Thermophilic Startup Influencing Full-Scale Startup

Tracy Chouinard

T 978.983.2047 tchouinard@browncald.com

Karla S. Guevarra, Alexander Miot, Bonnie Jones San Francisco Public Utilities Commission

Presentation Outline

- Background
 - Oceanside Plant
 - Digester Upgrades
- Objectives and Results of Lab-Scale Studies
- Full-Scale Implementation
- Conclusions

Oceanside Plant Overview

Oceanside Plant – Existing Operation

- Egg Shaped Digesters
 - 4 @ 750,000 gal each
- Flow Through Mode of Operation
- Achieve Class B Biosolids
 - 15 Days@ 95 Deg F (35 Degrees C)

- Current Biosolids End Uses
 - Wet Season Landfill Beneficial Use (ADC)
 - Dry Season Land Application in nearby Solano and Sonoma Counties

Temperature Phased Anaerobic Digestion

- Driver to Class A County ordinance requirement in order to continue to land apply
- Temperature Phased Anaerobic Digestion (TPAD) Process
 - Three thermophilic digesters operate in batch mode
 - One mesophilic digester receives all thermophilic sludge
- Achieve Class A through time and temp
 - 24 hours@ 131 Deg F (55 Deg C)

TPAD Conversion

Mesophilic Digesters

Previous Operation

- 4 Mesophilic digesters operating in parallel
- Daily feed evenly split to online digesters so each digester receives ~30,000 gal feed

Thermophilic Digesters

Future Operation – TPAD

- 3 Thermophilic Digesters alternate in Fill-Hold-Draw Mode where Fill digester receives 130,000 gal feed
- 1 Mesophilic Digester receives transferred thermophilic sludge

Digester Upgrades

- Existing Digesters were Retrofitted
- Corrosion repairs
- Odor Control Improvements
- Piping modifications
- Insulation improvements
- Heat exchanger upgrades
- Heat recovery system
- New boilers

Today's Digesters

Lab-Scale Primary Objectives

 Determine if existing mesophilic digesters could be converted thermophilic

Develop full-scale startup procedure for thermophilic conversion

Investigate impacts of batch mode operation

Lab-Scale Reactors

- Four 14 L Stainless Steel Reactors
 - 11L working volume
- Continuous biogas flow measurement
- Key parameters measured
 - Volatile Acids
 - Alkalinity
 - pH
 - Ammonia
 - TS/VS

Experiment 1

Objective	To determine the feasibility of converting mesophilic seed to thermophilic seed				
	Temp	2 day increase	2 day increase	4 day increase	Mesophilic Control
Main	Reactor	R1	R2	R3	R4
Configuration	Final OLR Goal (Ib VS/ft ³ -d)	0.17			

Experiment 2

Objective	To repeat and confirm results from Experiment 1	
	Temp Reactor	4 day increase R2&R4
Main Configuration	Final OLR Goal (lb VS/ft³-d)	0.17

Experiment 3 - Transition to Batch Mode

	Cycle = Fill-Hold- Draw	OLR (lb VS/ft ³ -d)
Initial Conditions	Flow Through Operation	0.17
Phase 1	Cycle 1 - 7	0.25 0.13 0.13
Phase 2	Cycle 8 - 14	0.34 0.08 0.08
Phase 3	Cycle 15 - 21	0.42 0.04 0.04
Batch OLR Achieved	Cycle 22	0.51 0.00 0.00

Modified Feed Strategy

	Modified OLR (lb VS/ft ³ -d)
Flow Through Operation	0.17
	0.25
Phase 1	0.00
	0.00
	0.34
Phase 2	0.00
	0.00
Phase 3	0.42
	0.00
	0.00
Batch OLR Achieved	0.51
	0.00
	0.00

Key Lab-Scale Findings and Impact on Full-Scale Startup

- Maintain Strict Temperature Control
 - Resulted in automating temperature control strategy in fullscale digesters
- Conservative Feed Strategy
 - Decision to "starve" digesters prior to temperature increase
 - Increase Feed to Digesters Weekly
- Transition from Flow Through to Batch Operation
 - Changed feed strategy to slowly ramp up overall OLR
 - One digester will be converted from flow through to batch mode while maintaining 3 mesophilic digesters

Full-Scale Implementation

Step	Date	Description
1	January 7 - 19, 2016	"Starve" Digester 4
2	January 19 - 23, 2016	Increase Temperature from 95 to 131 Degrees F
3	February 9 – March 29, 2016	Increase Digester feed from 5,000 to 30,000 while operating in flow through mode
4	June 6 - 10, 2016	Temperature increase for Digester 3 after starvation

Temperature Increase

Conclusions

Parameter	Lab-Scale vs. Full-Scale	Comments
Stringent Temperature Control		Closely monitored during full- scale startup
Biogas Production Trends		Expected gas production to stop during transition
Feed Strategy		Conservative approach
Volatile Acids	×	High peaks in lab-scale reactors likely from slug feeding
Flow Through to Batch Mode		Full-Scale success anticipated

Acknowledgements

- Oceanside Plant Staff
 - Operations
 - Maintenance
 - Laboratory
 - Instrumentation & Controls
 - Distributed Control Systems
- Process Engineering Team (Co-Authors)
 - Alexandre Miot
 - Karla Guevarra
 - Bonnie Jones (retired)
- TPAD Design Team CH2M

Questions?