BEAM -- Accounting for Greenhouse Gas Emissions from Biosolids Management

ANZBP Lunch & Learn Webinar February 2024

Janine Burke-Wells Ned Beecher

North East Biosolids & Residuals Association

What We Will Cover Today

- History of the Biosolids Emissions Assessment Model (BEAM)
- BEAM Basics
- Current version and planned updates
- How BEAM can be used
 - Examples from water resource recovery facilities (WRRFs)
- BEAM findings, lessons learned, future uses

GHG Emission Sources from Wastewater Treatment Processes

Biosolids Emissions Assessment Model (BEAM)

What is it?

- Excel spreadsheet
- Just for solids, not whole WRRF
- Scopes 1, 2, 3, and biogenic emissions
- Emissions factors from published literature

Purpose (from original CCME User Guide, 2009):

- estimate a program's GHG emissions, including establishing a baseline
- compare different biosolids management scenarios
- estimate impacts from changes in biosolids management
- understand the factors that have the greatest impact on GHG emissions

GHG Emission Sources from Wastewater Treatment Processes

Federation*

Disclaimer: Wastewater treatment greenhouse gas emissions are highly variable and process-specific. This figure is generalized and does not account for variables that could introduce or eliminate emissions from certain processes

BEAM – Background and History

Oct. 2010 BEAM 1.1, paper, and supplemental

material by Brown et al. in Env. Sci. & Tech.

2013

CCME publishes BEAM 1.1

2014

2015

2016

2017

2018

2008 - 2009 BEAM created under contract from Canadian Council of Ministers of the Environment (CCME) by Sylvis (Mike van Ham, Mark Teshima, John Lavery); with assistance from Sally Brown (Univ. of WA), Andrew Carpenter (Northern Tilth), and Ned Beecher (NEBRA)

2012

Nov. 2021 North East Biosolids & Residuals Association (NEBRA) takes on BEAM*2022 development and publishes it & new website, Sept. 2022.

2021 CCME allows updates but is no longer formally involved

2021 Effort to update BEAM merged with Northwest Biosolids online GHG calculator project

2019

2020

2009 BEAM 1.0 & User Guide published by CCME

2011

2011

2008

2009

2010

2023-24 next update by Science Review Team (SRT)

2021

2022

2023

BEAM*2022 and the new <u>www.BiosolidsGHGs.org</u> launched on September 20, 2022!

Updates Included:

Up to <u>10 scenarios</u> can be compared side by side

More options for unit processes (e.g., pyrolysis)

Key factors and calculations reviewed and updated

Updated user guide

Default values and suggested ranges

Regular reviews & updates by the Science Review Team

Thanks to the Science Review Teams (SRT)!

- **2022** Science Review Team (all PhDs)
 - Sally Brown (University of Washington), Washington state, USA
 - John Willis (Brown & Caldwell), Georgia, USA
 - Emma Shen (Jacobs), Toronto, Canada
 - Céline Vaneeckhaute (Université Laval), Quebec City, Canada
 - Mike Badzmierowski (Virginia Tech/ Oregon Department of Agriculture), OR, USA
- 2023-24 Science Review Team (all PhDs)
 - Sally Brown (University of Washington), Washington state, USA
 - Emma Shen (Jacobs), Toronto, Canada
 - Céline Vaneeckhaute (Université Laval), Quebec City, Canada
 - Tarek Abichou (Florida State University), Florida, USA
 - Ruth Richardson (Cornell University), New York state, USA

Identifying & tracking updates

.

•

٥		Q Search	Ctrl+K 😂 Upgrade	🕀 New 🛛 🤡 🗎	⊡ X ≧ ₩
🚔 NEBRA BEA 🗸	B BEAM 2023 Review			5	Share Automations
Spaces					
쑸 Everything	BEAM 2023 Review	= ⊘ ∧ ₽	ā		Add Task 🗸
B BEAM 2023 Review ···· +					
D Typos & Clarifications	Board = List + Vie	ew			
D Minor Emissions Factor U					
🗅 Calculation/Formula Chan	Recent See all	Docs	See all +	Resources	+
Functionality Changes	BEAM Team Prioriti • in BEAM 2023	Link to Neo	d's D • in Link to Ned's		
D For Science Review Team	i≡ List	Suggestion	ns fro • in Suggestions fr	் Drop file	es here to attach
🗅 User Guide Updates	Board • in BEAM 2023 Review	Bill Brower	Sug • in Bill Brower Sug		
D Website Updates					
Deferred/Wish List					
🕞 BEAM Team P 👌 … 🕂	Folders				See all +
Priorities for North 16	BEAM Team Priorities fo	eferred/Wish List	Website Updates	User C	Guide Updates
& Invite ⑦					

BEAM is a Transparent Model!

References, Calculations, Assumptions and Default Values									
	Cell Colo	r Key for Refe	erences Wor	ksheet					
	umber used in origin	al BEAM calculati	ons (CCME, 2011						
			Input Cel						
		Са	alculated Result	t					
			Constant	t					
Fuel & Transport									
	diesel	CO ₂ (kg/gal)	CH ₄ (g/mi)	N₂O (g/mi)	Total CO2e (kg/gal)	https://www	v.geotab.com	/truck-mpg-benchmark/)	
	emissions	10.21	0.0051	0.0048	10.21				
	rail emissions	CO ₂ (kg/ton-mile	CH ₄ (g/ton-mile)) N₂O (g/ton-mile))otal CO₂ eq (kg/ton-mi	le)			
	Tail chilosions	0.023	0.0018	0.0006	0.023	from EPA emi	ssion factors	for GHG Inventories - last mod	. March 2018 - Table 9
CO ₂ eq diesel (kg/gallon)	10.21	The Climate R	egistry's 2019	Default Emissio	ons Factors				
CO ₂ eq diesel (g/L)	2,697	calculated fro	m numbers ab	ove					
Average truck miles/gal (diesel)	5.82	(for New Yor	k) From GeoTa	b data gathered	d from 31,170 trucks	2016-2017			
Average truck km/l (diesel)	2.5	calculated fro	m numbers ab	ove					
Train hauling emissions (kg CO ₂ eq/Mg-km)	0.016	calculated fro	m numbers ab	ove					
Natural Gas									
CO2 eq from combustion of natural gas(g/m ³)	1,901	Canadian def	ault CO ₂ emissi	ions factors for	r combustion of natu	ral gas - Climat	e Registry Ger	neral Reporting Protocol V. 1.1	
Heat content (Btu/m ³)	36,263	Canadian default CO, emissions factors for combustion of natural gas - Climate Registry General Reporting Protocol V, 1.1							
Methane									
tensity of methane das (kg/m³) - at standard temp, and pressure	0.71	EPA 2006 So	lid Waste Man	agement and GI	HG Emissions				
Heat content of methane (Btu/m ³)	35.830	EPA 2004 Un	it Conversions	Emissons Fac	tors, and Other Refe	erence Data			
	00,000	2174 2004, 01		, children ac		Jienee Data			
Propago									
	0.07	https://www.				a coloulator col	louisticae and	rafaran ana	
	0.02	https://www.	.epa.gov/energ	y/greenhouse-	gases-equivalencies	s-calculator-ca	iculations-and-	references	
CO ₂ ea propane/cylinder	0.0029	nups.//www.	.epa.gov/energ	y/greennouse-	gases-equivalencies	s-calculator-ca	iculations-and-	references	
So 2 od propane (mg So 2 od ng)	0.0020	·							
Wastewater Treatment Factors									
Eurical TCC is aludae after primary and importation (kg/1000 m2)	450	Matanif & Edd							
Typical TSS in studge alter primary sedimentation (kg/1000 m ⁻)	150	Metcalt & Edd	iy, 2003, p. 14:						
expected solids concentration of combination primary/wAS untilickened studge (%)	1.0%	Metcalt & Edd	iy, 2003, p. 148	-					
expected solids concentration in sludge from gravity thickener, primary and WAS (%)	4%	Metcalf & Edd	ly, 2003, p. 145	o/					
Typical Biosolids Characteristics (De-watered cake)	unprocessed	digested	limed						
Total nitronen (%-dry weight)	4.0%	5.0%	3.2%	Northern Tible					
rotar navyen (vorury wergint) Tatal abaeabarue (% daywaiabt)	4.0%	1.0%	1 204	sugn a					
rotarphosphorus (zerury welgilt)	1.0%	1.9%	1.270	oot available					
TVC/0/ douveright)	70.00/		E	rior di di di di di di					

All process assumptions and emission factors are listed in the Reference Assumptions tab.

THE NEW BEAM*2022 Screenshots

A	В	С	D	E	F	G	Н	I.	J			— .	1
						Inst	truction	<u>د</u>		N34		<u>~</u>]:	
						1113	i uction	5					
	BEAM									4	۵		
	This vers	ion of the BE	EAM was up	dated to in	clude 10 Sc	enarios in 2	2020. It was	updated to	include	_			1
	processe	s in 2021. Th	ne instructio	ons below p	rovide guid	lance for ge	etting starte	d and using	the moc	2			
	Getting S	started								3 Proce	ssor:		-
										4 Facilit	y Name/Lo	ocation:	
	The first	sheets to fill	out in the	BEAM are t	ne 'Scenario	os Data' she	eet and the	'Amount an	d Destin	5 Date o	f calculat	ion:	
	organize	d into 10 Sce	enarios.							a Calcul	ations by		-
	1. <u>'Scena</u>	arios Data'									unono by		-
	On the 'S	cenarios Dat	ta' sheet, th	ne user fills	in the olive	green cells	to names a	ind describe	s each S	<u> </u>			
	should b	e included in 6 Scopario	the model	. Each proc	ess corresp	onds to a sr	heet in the i	model, and e	each unr	8			
	Tin Be	fore beginni	ng to fill our	t the mode	have orga	nized notes	for each S	cenario Fill	out whic	a Site-S	pecific Da	ita	_
	before fi	lling out eacl	h unit proce	ess sheet, so	, have orga o that nothi	ing contribu	uting to GH	G emissions	is missed	<u> </u>		Annual Pr	00
	2. 'Amou	unt and Dest	ination'			ing continue	the coloring to only	5 01115510115		1 2 Wai	abted GHG E	missions	Fo
	Informat	ion about sp	ecific Scena	arios goes ir	nto the 'Am	ount and D	estination'	sheet, includ	ding the	3	G	lobal Warr	<u>ni</u>
	categorie	es, amount t	o each dest	ination, and	d transport	ation inforn	nation.	-	-	4			
	Two othe	er important	sheets are	the 'Analys	es' and 'W\	WRF Info &	Results.'			5 CO2e	q Totals	(Mg/yea	aı
	<u>Analyses</u>	<u>s'</u> Nofault value	c are provid	dad in tha n	aadal itick		actual data	whore possi	bla Fill	•			-
	Instant							where possi					
>	Instru		RRF Info 8	Results	Scenario	s Data	Amount an	id Destinatio	on A				
-											Unit Proc	ess	
	5				1				-				
	Th	e model is color	-coded so that	t the user know	vs where to er	nter data. A co	lor-coded key	is located on	-	7			
	all	user-input shee	ets.							8	Storage Prior	to Proces	siı
	-				Key	Input	0			9	Conditioni	ng/Thicker	<u>nii</u>
			Data us	Def ed to calculate de	ault from reference	ce values	0			20	Aer	obic Diges	<u>sti</u>
			- Data da	bed to calculate de	Proce	ss output	0		-	21	Anaer	iobic Diges	<u>sti</u>
	-			input v	Calculat	ted result	0			2	Andefol	Dic Digesti De-wate	<u>or</u> ariu
	Gr	een input cells a	are for entry of	f known data.	Data should be	e entered in th	e correct unit.	Common unit		24	т	hermal Dr	<u>ui</u>
	co	nversion factors	are included	on the Referen	ces & Assump	otion sheet.				:5		BioDr	<u>, m</u>
	If c	lata is unknown	, the default in	n the adjacent	blue cell can b	be entered into	the green cel	l instead.		26	Alkalin	ne Stabiliza	ati
	Pin	k cells show val	lues that are c	alculated base	d on inputs, w	hich feed into	blue cells. The	v contain		27		Compos	stir

information which may be useful or interesting to the user.

Gray cells hold GHG emission results from different steps of the process, as well as summed totals.

Orange cells are input cells as well, but they may be filled in with a formula that draws from another cell (i.e. the quantity of sludge going to composting may draw directly from the Amounts and Destinations sheet). Orange cells containing formulas may be overwritten if better data is available.

File Home Ins	ert Page	Lavout F	ormulas Dat	a Review	v View	Help Qu	ickBooks			
	J	,								
Aria	ıl	∽ 11	- A^ A =	ΞΞ =	≫ <u>7</u> ~	ab,			\sim	
└── └──										
Paste B	Ι <u>U</u> ~	🗄 ~ 🗸	• <u>A</u> ~	≣ ≡ ≡	←= →=		\$ ~ %	9 (↔0 .00		
Y <									Format	ting Y labi
Clipboard 🖬		Font		Ali	gnment		Numł	ber		Styles
₩34 ~	$\langle \checkmark fx$									
A .	Ιв			E	F	l G	н	1 1	l J	Ιĸ
		Uni	versal BEAM up	odate						
			-							
Processor:	J. Burke-Well	S								
Facility Name/Location:	Warwick Sew	ver Authority, W	/arwick, RI							
Date of calculation:	8/30/2022									
Calculations by:	J.Burke-Wells	6								
Site-Specific Data			40.000							
Annual Frodu	Loc	cation (from e-Grid)	40,000 U.S.							
Weighted GHG Emissions for F	Power Generation by	y Province (g/kWh)	373							
Liobal Warming	g Potential (GWP) ti	ime horizon (years)	100							
CO an Tatala (Markuran)	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Scenario 9	Scenario 10
CO ₂ eq Totals (Wig/year)	Tunical Landfill	Jamesive Lendfill	line Stahilization for Lanc	ריהואט עלההרי	ע אירוב, אינט ביבט אורטי	AD to Landfill	1	Composition	1	1
,										
	Conditioning>	Conditioning>	Cond> Dewatering	Conditioning>	Cond> Dewatering>	Cond> AD>		Cond> AD>		
Unit Process	Dewatering>	Dewatering>	> Alkaline Stabilization	Dewatering>	Biodrying>	Dewatering>	0	Dewatering>	0	0
	Typical Landfill	Landfill	> Land App	Combustion	Pyrolysis ->	Typical Landfill		Compost		
Storage Prior to Processing	0	0	0	0	0	0	NA	0	NA	NA
Lonationing Thickening Aerobic Digestion	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA
Anaerobic Digestion	NA	NA	NA	NA	NA	-32	NA	70	NA	NA
Anaerobic Digestion 2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
De-watering		0	0	0	0	0	NA	0	NA	NA
Linermal Drying BioDruing	NA NA	NA NA	NA NA	NA NA	NA 0	NA NA	NA	NA NA	NA NA	NA NA
Alkaline Stabilization	NA	NA	1,708	NA	NA	NA	NA	NA	NA	NA
Composting	NA	NA	NA	NA	NA	NA	NA	-983	NA	NA
Composting 2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Landfill Disposal - Typical	-734	NA	0	NA	NA	-4,953	NA	NA	NA	NA
Landriii Disposal - Worst Case	NA NA	-1 375	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA
Landfill Disposal - CA Regulatory	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
< > Inst	ructions	WRRF In	fo & Results	Scenario	s Data	Amount a	nd Destina	tion An	, ••• +	: •

Appendix A: Sheet-by-Sheet Instructions for E

Best practice is to save a copy of the original, unaltered s all future projects. When beginning a new project, open with a project-specific name. It may also be prudent to s changes are made to a project's BEAM*2022 spreadshee.

The following instructions are organized by worksheet, listed in the order in which data should be added.

THE NEW BEAM*2022

Step 1: Instructions

Review the instructions prior to beginning work on the model.

Step 2: WRRFInfo & Results

Fill in the olive green input cells with the project's basic information. Once all other worksheets are filled out, this worksheet displays emissions for each of 10 possible Scenarios in the gray output cells. The "Processor" refers to the entity managing the material that is being modeled. Emissions generated by each unit process are displayed in CO₂ equivalents per dry metric ton of material. Total emissions per scenario are also shown, broken down into CO₂, CH₄, N₂O, and biogenic CO₂.

Input data for WRRF Info & Results sheet:

Site-Specific Data	Data Entry Notes
Annual Production of de- watered biosolids (wet tons)	Entered for information purposes only; not used in model calculations
Location (from e-Grid)	Choose from drop-down list of e-Grid regions
	Choose from drop-down list: 20-year or 100-year time horizon for Global Warming Potentials. BEAM*2022 default CO ₂ -eq for CH ₄ & N ₂ O follow the IPCC's 4 th Assessment Report. Users have option to overwrite the CO ₂ -eq values in the References & Assumptions worksheet if needed; see notes under Section 7: References & Assumptions of this
GWP time horizon (years)	User Guide.

Instructions Instructions Step 2: WRRF Info and Results Step 3: Scenarios Data Step 4: Amount and Destination Step 5: Analyses **Step 6: Digestion Process** Step 7: Unit Processes Step 8: Transportation Step 9: Inspect Results

Estimating GHG Emissions for a 10-mgd WWTP

Treatment and End-Use Alternatives:

- 1. Dewatering + Landfill (Typical)
- 2. Dewatering + Landfill (Worst-case)
- 3. Dewatering + Landfill (Aggressive)
- 4. Anaerobic Digestion + Land Application
- 5. Anaerobic Digestion + Landfill (Typical)
- 6. Aerobic Digestion + Land Application
- 7. Composting + Land Application
- 8. Thermal Drying + Land Application
- 9. Thermal Drying + Landfill (Typical)
- 10. BioDrying + Pyrolysis + Land Application

Slide courtesy of Christine Polo (Carollo Engineers)

Emissions by Process

Emissions by Greenhouse Gas

GHG Emission Reduction Opportunities

GHG Emissions Reduction (metric tons CO2E/yr)

Car Equivalents

Slide courtesy of Christine Polo (Carollo Engineers)

Examples of Using BEAM Over the Past Decade

more examples at: https://www.biosolidsghgs.org/sharing

Chicago MWRD: Comparing Management Options

30-2010-Seminar-Brown_Tian_MWRD_CO2.pdf

Halton Region, Ontario: Biosolids Composting Feasibility Study

Demonstrating GHG benefits of composting over status quo to assist decision making

Reference: Proceedings from WEFTEC 2019, paper presentation by T.O. Williams. E. Shen, D. Ross, P. Morden, D. Iamarino – see <u>https://www.accesswater.org/?id=-</u> 328435&fromsearch=true#iosfirsthighlight

Québec: Baseline & Comparing Alternatives

Table 1. Summary of emissions for the current scenario

Agricultural valorisation (65%)	tCO ₂ e	Composting (35%)	tCO ₂ e							
1-Process direct emissions										
Transportation	80	Transportation	41							
Machinery	31	Machinery	88							
CH ₄ emissions	67	CH ₄ emissions	221							
N ₂ O emissions	47	N ₂ O emissions	360							
Sequestration	-599	Sequestration	-287							
2- In	direct emission	ons linked to energy use								
Electricity consumption	0	Electricity concumption	5							
	3- Other in	direct emissions								
N replacement	-393	N replacement	-193							
P replacement	-81	P replacement	-42							
Total (1 + 2)	54									
Total (1 + 2 + 3)	-655									

Figure 2. Comparison of annual emissions for five different scenarios of biosolids management for

the city of Saguenay.

BiosolidsGHGs.org

- Spreadsheet available for download
 - Recommended \$\$\$ donation by sliding scale
 to support ongoing annual reviews & website hosting
- Supporting documents & links
 - Resources for utilities on GHG emissions & calculations
 - Standard protocols
- Space for sharing (send us your examples of BEAM use)
 - results
 - ► tips
 - uses of data

Maximizing climate benefits from biosolids management.

Featuring BEAM*2022

... a project of <u>MEDRA</u> and <u>MM Dissolids</u> ... not the work or maponalbility of DCME

... with support from:

About

This veballe provides information, data, and a calculator - BEAM-2022 - to help biosolids management programs reduce their greenhouse gas (SHG) emissions (pathon foriprint)... The original Biosolids Emissions Assessment Model (BEAM) was published by the Canadian Council of Winistens of the Environment (COMG) in 2020/2010. Building on that, with CCME permission, and with input from multiple experts & stateholders, MEIRA & NW Biosolids present BEAM*2022 and supporting information...

Sharing Data & Experiences

Share your GHG emissions data, calculations, experiences, & tracking. By compiling and sharing, the biosolids profession will improve understanding and consensus regarding baselines and best practices, creating comparable data and outcomes. This may lead to the ultimate goal of creating formal methods for carbon tracing.

Share new

High Priority Topics for current SRT Review BEAM*202_

- Fertilizer offsets (GHG emissions from commercial fertilizer production)
- $> N_2 O$ from combustion
- $> N_2O$ and methane from land application
- ► Fugitive CH₄ emissions from Anaerobic Digestion
- Carbon sequestration values

Future?

- BEAM*202_ further builds consensus as THE method for calculating GHG emissions from biosolids management
- A resource hub with crowd-sourced supporting information & examples
- Respected source for biosolids-specific emissions/reductions/sequestration factors (as found in references)
- Eventually helping develop protocols and working with registrars to allow for marketable carbon offsets
- Your input welcome & needed.

Thanks to the Supporters...

Acknowledgements!

Thanks to NEBRA...

Particularly: Janine Burke-Wells, Ned Beecher, and Andrew Carpenter

... and Northwest Biosolids! Particularly: Maile Lono-Batura (now Director of Sustainable Biosolids Programs at WEF)

